Theory Uint16

(*  Title:      Uint16.thy
    Author:     Andreas Lochbihler, ETH Zurich
*)

chapter ‹Unsigned words of 16 bits›

theory Uint16 imports
  Word_Type_Copies
  Code_Target_Integer_Bit
begin

text ‹
  Restriction for ML code generation:
  This theory assumes that the ML system provides a Word16
  implementation (mlton does, but PolyML 5.5 does not).
  Therefore, the code setup lives in the target SML_word›
  rather than SML›.  This ensures that code generation still
  works as long as uint16› is not involved.
  For the target SML› itself, no special code generation 
  for this type is set up. Nevertheless, it should work by emulation via typ16 word
  if the theory text‹Code_Target_Int_Bit› is imported.

  Restriction for OCaml code generation:
  OCaml does not provide an int16 type, so no special code generation 
  for this type is set up.
›

section ‹Type definition and primitive operations›

typedef uint16 = UNIV :: 16 word set ..

global_interpretation uint16: word_type_copy Abs_uint16 Rep_uint16
  using type_definition_uint16 by (rule word_type_copy.intro)

setup_lifting type_definition_uint16

declare uint16.of_word_of [code abstype]

declare Quotient_uint16 [transfer_rule]

instantiation uint16 :: {comm_ring_1, semiring_modulo, equal, linorder}
begin

lift_definition zero_uint16 :: uint16 is 0 .
lift_definition one_uint16 :: uint16 is 1 .
lift_definition plus_uint16 :: uint16  uint16  uint16 is (+) .
lift_definition uminus_uint16 :: uint16  uint16 is uminus .
lift_definition minus_uint16 :: uint16  uint16  uint16 is (-) .
lift_definition times_uint16 :: uint16  uint16  uint16 is (*) .
lift_definition divide_uint16 :: uint16  uint16  uint16 is (div) .
lift_definition modulo_uint16 :: uint16  uint16  uint16 is (mod) .
lift_definition equal_uint16 :: uint16  uint16  bool is HOL.equal .
lift_definition less_eq_uint16 :: uint16  uint16  bool is (≤) .
lift_definition less_uint16 :: uint16  uint16  bool is (<) .

global_interpretation uint16: word_type_copy_ring Abs_uint16 Rep_uint16
  by standard (fact zero_uint16.rep_eq one_uint16.rep_eq
    plus_uint16.rep_eq uminus_uint16.rep_eq minus_uint16.rep_eq
    times_uint16.rep_eq divide_uint16.rep_eq modulo_uint16.rep_eq
    equal_uint16.rep_eq less_eq_uint16.rep_eq less_uint16.rep_eq)+

instance proof -
  show OFCLASS(uint16, comm_ring_1_class)
    by (rule uint16.of_class_comm_ring_1)
  show OFCLASS(uint16, semiring_modulo_class)
    by (fact uint16.of_class_semiring_modulo)
  show OFCLASS(uint16, equal_class)
    by (fact uint16.of_class_equal)
  show OFCLASS(uint16, linorder_class)
    by (fact uint16.of_class_linorder)
qed

end

instantiation uint16 :: ring_bit_operations
begin

lift_definition bit_uint16 :: uint16  nat  bool is bit .
lift_definition not_uint16 :: uint16  uint16 is Bit_Operations.not .
lift_definition and_uint16 :: uint16  uint16  uint16 is Bit_Operations.and .
lift_definition or_uint16 :: uint16  uint16  uint16 is Bit_Operations.or .
lift_definition xor_uint16 :: uint16  uint16  uint16 is Bit_Operations.xor .
lift_definition mask_uint16 :: nat  uint16 is mask .
lift_definition push_bit_uint16 :: nat  uint16  uint16 is push_bit .
lift_definition drop_bit_uint16 :: nat  uint16  uint16 is drop_bit .
lift_definition signed_drop_bit_uint16 :: nat  uint16  uint16 is signed_drop_bit .
lift_definition take_bit_uint16 :: nat  uint16  uint16 is take_bit .
lift_definition set_bit_uint16 :: nat  uint16  uint16 is Bit_Operations.set_bit .
lift_definition unset_bit_uint16 :: nat  uint16  uint16 is unset_bit .
lift_definition flip_bit_uint16 :: nat  uint16  uint16 is flip_bit .

global_interpretation uint16: word_type_copy_bits Abs_uint16 Rep_uint16 signed_drop_bit_uint16
  by standard (fact bit_uint16.rep_eq not_uint16.rep_eq and_uint16.rep_eq or_uint16.rep_eq xor_uint16.rep_eq
    mask_uint16.rep_eq push_bit_uint16.rep_eq drop_bit_uint16.rep_eq signed_drop_bit_uint16.rep_eq take_bit_uint16.rep_eq
    set_bit_uint16.rep_eq unset_bit_uint16.rep_eq flip_bit_uint16.rep_eq)+

instance
  by (fact uint16.of_class_ring_bit_operations)

end

lift_definition uint16_of_nat :: nat  uint16
  is word_of_nat .

lift_definition nat_of_uint16 :: uint16  nat
  is unat .

lift_definition uint16_of_int :: int  uint16
  is word_of_int .

lift_definition int_of_uint16 :: uint16  int
  is uint .

context
  includes integer.lifting
begin

lift_definition Uint16 :: integer  uint16
  is word_of_int .

lift_definition integer_of_uint16 :: uint16  integer
  is uint .

end

global_interpretation uint16: word_type_copy_more Abs_uint16 Rep_uint16 signed_drop_bit_uint16
  uint16_of_nat nat_of_uint16 uint16_of_int int_of_uint16 Uint16 integer_of_uint16
  apply standard
       apply (simp_all add: uint16_of_nat.rep_eq nat_of_uint16.rep_eq
         uint16_of_int.rep_eq int_of_uint16.rep_eq
         Uint16.rep_eq integer_of_uint16.rep_eq integer_eq_iff)
  done

instantiation uint16 :: "{size, msb, set_bit, bit_comprehension}"
begin

lift_definition size_uint16 :: uint16  nat is size .

lift_definition msb_uint16 :: uint16  bool is msb .

text ‹Workaround: avoid name space clash by spelling out text‹lift_definition› explicitly.›

definition set_bit_uint16 :: uint16  nat  bool  uint16
  where set_bit_uint16_eq: set_bit_uint16 a n b = (if b then Bit_Operations.set_bit else unset_bit) n a

context
  includes lifting_syntax
begin

lemma set_bit_uint16_transfer [transfer_rule]:
  (cr_uint16 ===> (=) ===> (⟷) ===> cr_uint16) Generic_set_bit.set_bit Generic_set_bit.set_bit
  by (simp only: set_bit_eq [abs_def] set_bit_uint16_eq [abs_def]) transfer_prover

end

lift_definition set_bits_uint16 :: (nat  bool)  uint16 is set_bits .
lift_definition set_bits_aux_uint16 :: (nat  bool)  nat  uint16  uint16 is set_bits_aux .

global_interpretation uint16: word_type_copy_misc Abs_uint16 Rep_uint16 signed_drop_bit_uint16
  uint16_of_nat nat_of_uint16 uint16_of_int int_of_uint16 Uint16 integer_of_uint16 16 set_bits_aux_uint16
  by (standard; transfer) simp_all

instance using uint16.of_class_bit_comprehension
  uint16.of_class_set_bit
  by simp_all standard

end

section ‹Code setup›

code_printing code_module Uint16  (SML_word)
‹(* Test that words can handle numbers between 0 and 15 *)
val _ = if 4 <= Word.wordSize then () else raise (Fail ("wordSize less than 4"));

structure Uint16 : sig
  val set_bit : Word16.word -> IntInf.int -> bool -> Word16.word
  val shiftl : Word16.word -> IntInf.int -> Word16.word
  val shiftr : Word16.word -> IntInf.int -> Word16.word
  val shiftr_signed : Word16.word -> IntInf.int -> Word16.word
  val test_bit : Word16.word -> IntInf.int -> bool
end = struct

fun set_bit x n b =
  let val mask = Word16.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))
  in if b then Word16.orb (x, mask)
     else Word16.andb (x, Word16.notb mask)
  end

fun shiftl x n =
  Word16.<< (x, Word.fromLargeInt (IntInf.toLarge n))

fun shiftr x n =
  Word16.>> (x, Word.fromLargeInt (IntInf.toLarge n))

fun shiftr_signed x n =
  Word16.~>> (x, Word.fromLargeInt (IntInf.toLarge n))

fun test_bit x n =
  Word16.andb (x, Word16.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word16.fromInt 0

end; (* struct Uint16 *)›
code_reserved SML_word Uint16

code_printing code_module Uint16  (Haskell)
 ‹module Uint16(Int16, Word16) where

  import Data.Int(Int16)
  import Data.Word(Word16)›
code_reserved Haskell Uint16

text ‹Scala provides unsigned 16-bit numbers as Char.›

code_printing code_module Uint16  (Scala)
‹object Uint16 {

def set_bit(x: scala.Char, n: BigInt, b: Boolean) : scala.Char =
  b match {
    case true => (x | (1.toChar << n.intValue)).toChar
    case false => (x & (1.toChar << n.intValue).unary_~).toChar
  }

def shiftl(x: scala.Char, n: BigInt) : scala.Char = (x << n.intValue).toChar

def shiftr(x: scala.Char, n: BigInt) : scala.Char = (x >>> n.intValue).toChar

def shiftr_signed(x: scala.Char, n: BigInt) : scala.Char = (x.toShort >> n.intValue).toChar

def test_bit(x: scala.Char, n: BigInt) : Boolean = (x & (1.toChar << n.intValue)) != 0

} /* object Uint16 */›
code_reserved Scala Uint16

text ‹
  Avoid @{term Abs_uint16} in generated code, use @{term Rep_uint16'} instead. 
  The symbolic implementations for code\_simp use @{term Rep_uint16}.

  The new destructor @{term Rep_uint16'} is executable.
  As the simplifier is given the [code abstract] equations literally, 
  we cannot implement @{term Rep_uint16} directly, because that makes code\_simp loop.

  If code generation raises Match, some equation probably contains @{term Rep_uint16} 
  ([code abstract] equations for @{typ uint16} may use @{term Rep_uint16} because
  these instances will be folded away.)

  To convert @{typ "16 word"} values into @{typ uint16}, use @{term "Abs_uint16'"}.
›

definition Rep_uint16' where [simp]: "Rep_uint16' = Rep_uint16"

lemma Rep_uint16'_transfer [transfer_rule]:
  "rel_fun cr_uint16 (=) (λx. x) Rep_uint16'"
unfolding Rep_uint16'_def by(rule uint16.rep_transfer)

lemma Rep_uint16'_code [code]: "Rep_uint16' x = (BITS n. bit x n)"
  by transfer (simp add: set_bits_bit_eq)

lift_definition Abs_uint16' :: "16 word  uint16" is "λx :: 16 word. x" .

lemma Abs_uint16'_code [code]:
  "Abs_uint16' x = Uint16 (integer_of_int (uint x))"
including integer.lifting by transfer simp

declare [[code drop: "term_of_class.term_of :: uint16  _"]]

lemma term_of_uint16_code [code]:
  defines "TR  typerep.Typerep" and "bit0  STR ''Numeral_Type.bit0''" shows
  "term_of_class.term_of x = 
   Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint16.uint16.Abs_uint16'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR (STR ''Numeral_Type.num1'') []]]]]], TR (STR ''Uint16.uint16'') []]))
       (term_of_class.term_of (Rep_uint16' x))"
by(simp add: term_of_anything)

lemma Uint16_code [code]: "Rep_uint16 (Uint16 i) = word_of_int (int_of_integer_symbolic i)"
unfolding Uint16_def int_of_integer_symbolic_def by(simp add: Abs_uint16_inverse)

code_printing
  type_constructor uint16 
  (SML_word) "Word16.word" and
  (Haskell) "Uint16.Word16" and
  (Scala) "scala.Char"
| constant Uint16 
  (SML_word) "Word16.fromLargeInt (IntInf.toLarge _)" and
  (Haskell) "(Prelude.fromInteger _ :: Uint16.Word16)" and
  (Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint16.Word16)" and
  (Scala) "_.charValue"
| constant "0 :: uint16" 
  (SML_word) "(Word16.fromInt 0)" and
  (Haskell) "(0 :: Uint16.Word16)" and
  (Scala) "0"
| constant "1 :: uint16" 
  (SML_word) "(Word16.fromInt 1)" and
  (Haskell) "(1 :: Uint16.Word16)" and
  (Scala) "1"
| constant "plus :: uint16  _  _" 
  (SML_word) "Word16.+ ((_), (_))" and
  (Haskell) infixl 6 "+" and
  (Scala) "(_ +/ _).toChar"
| constant "uminus :: uint16  _" 
  (SML_word) "Word16.~" and
  (Haskell) "negate" and
  (Scala) "(- _).toChar"
| constant "minus :: uint16  _" 
  (SML_word) "Word16.- ((_), (_))" and
  (Haskell) infixl 6 "-" and
  (Scala) "(_ -/ _).toChar"
| constant "times :: uint16  _  _" 
  (SML_word) "Word16.* ((_), (_))" and
  (Haskell) infixl 7 "*" and
  (Scala) "(_ */ _).toChar"
| constant "HOL.equal :: uint16  _  bool" 
  (SML_word) "!((_ : Word16.word) = _)" and
  (Haskell) infix 4 "==" and
  (Scala) infixl 5 "=="
| class_instance uint16 :: equal  (Haskell) -
| constant "less_eq :: uint16  _  bool" 
  (SML_word) "Word16.<= ((_), (_))" and
  (Haskell) infix 4 "<=" and
  (Scala) infixl 4 "<="
| constant "less :: uint16  _  bool" 
  (SML_word) "Word16.< ((_), (_))" and
  (Haskell) infix 4 "<" and
  (Scala) infixl 4 "<"
| constant "Bit_Operations.not :: uint16  _" 
  (SML_word) "Word16.notb" and
  (Haskell) "Data'_Bits.complement" and
  (Scala) "_.unary'_~.toChar"
| constant "Bit_Operations.and :: uint16  _" 
  (SML_word) "Word16.andb ((_),/ (_))" and
  (Haskell) infixl 7 "Data_Bits..&." and
  (Scala) "(_ & _).toChar"
| constant "Bit_Operations.or :: uint16  _" 
  (SML_word) "Word16.orb ((_),/ (_))" and
  (Haskell) infixl 5 "Data_Bits..|." and
  (Scala) "(_ | _).toChar"
| constant "Bit_Operations.xor :: uint16  _" 
  (SML_word) "Word16.xorb ((_),/ (_))" and
  (Haskell) "Data'_Bits.xor" and
  (Scala) "(_ ^ _).toChar"

definition uint16_div :: "uint16  uint16  uint16" 
where "uint16_div x y = (if y = 0 then undefined ((div) :: uint16  _) x (0 :: uint16) else x div y)"

definition uint16_mod :: "uint16  uint16  uint16" 
where "uint16_mod x y = (if y = 0 then undefined ((mod) :: uint16  _) x (0 :: uint16) else x mod y)"

context includes undefined_transfer begin

lemma div_uint16_code [code]: "x div y = (if y = 0 then 0 else uint16_div x y)"
unfolding uint16_div_def by transfer (simp add: word_div_def)

lemma mod_uint16_code [code]: "x mod y = (if y = 0 then x else uint16_mod x y)"
unfolding uint16_mod_def by transfer (simp add: word_mod_def)

lemma uint16_div_code [code]:
  "Rep_uint16 (uint16_div x y) =
  (if y = 0 then Rep_uint16 (undefined ((div) :: uint16  _) x (0 :: uint16)) else Rep_uint16 x div Rep_uint16 y)"
unfolding uint16_div_def by transfer simp

lemma uint16_mod_code [code]:
  "Rep_uint16 (uint16_mod x y) =
  (if y = 0 then Rep_uint16 (undefined ((mod) :: uint16  _) x (0 :: uint16)) else Rep_uint16 x mod Rep_uint16 y)"
unfolding uint16_mod_def by transfer simp

end

code_printing constant uint16_div 
  (SML_word) "Word16.div ((_), (_))" and
  (Haskell) "Prelude.div" and
  (Scala) "(_ '/ _).toChar"
| constant uint16_mod 
  (SML_word) "Word16.mod ((_), (_))" and
  (Haskell) "Prelude.mod" and
  (Scala) "(_ % _).toChar"

global_interpretation uint16: word_type_copy_target_language Abs_uint16 Rep_uint16 signed_drop_bit_uint16
  uint16_of_nat nat_of_uint16 uint16_of_int int_of_uint16 Uint16 integer_of_uint16 16 set_bits_aux_uint16 16 15
  defines uint16_test_bit = uint16.test_bit
    and uint16_shiftl = uint16.shiftl
    and uint16_shiftr = uint16.shiftr
    and uint16_sshiftr = uint16.sshiftr
    and uint16_set_bit = uint16.set_bit
  by standard simp_all

code_printing constant uint16_test_bit 
  (SML_word) "Uint16.test'_bit" and
  (Haskell) "Data'_Bits.testBitBounded" and
  (Scala) "Uint16.test'_bit"

code_printing constant uint16_set_bit 
  (SML_word) "Uint16.set'_bit" and
  (Haskell) "Data'_Bits.setBitBounded" and
  (Scala) "Uint16.set'_bit"

code_printing constant uint16_shiftl 
  (SML_word) "Uint16.shiftl" and
  (Haskell) "Data'_Bits.shiftlBounded" and
  (Scala) "Uint16.shiftl"

code_printing constant uint16_shiftr 
  (SML_word) "Uint16.shiftr" and
  (Haskell) "Data'_Bits.shiftrBounded" and
  (Scala) "Uint16.shiftr"

code_printing constant uint16_sshiftr 
  (SML_word) "Uint16.shiftr'_signed" and
  (Haskell) 
    "(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint16.Int16) _)) :: Uint16.Word16)" and
  (Scala) "Uint16.shiftr'_signed"

lemma uint16_msb_test_bit: "msb x  bit (x :: uint16) 15"
  by transfer (simp add: msb_word_iff_bit)

lemma msb_uint16_code [code]: "msb x  uint16_test_bit x 15"
  by (simp add: uint16.test_bit_def uint16_msb_test_bit)

lemma uint16_of_int_code [code]: "uint16_of_int i = Uint16 (integer_of_int i)"
including integer.lifting by transfer simp

lemma int_of_uint16_code [code]:
  "int_of_uint16 x = int_of_integer (integer_of_uint16 x)"
  by (simp add: int_of_uint16.rep_eq integer_of_uint16_def)

lemma uint16_of_nat_code [code]:
  "uint16_of_nat = uint16_of_int  int"
  by transfer (simp add: fun_eq_iff)

lemma nat_of_uint16_code [code]:
  "nat_of_uint16 x = nat_of_integer (integer_of_uint16 x)"
  unfolding integer_of_uint16_def including integer.lifting by transfer simp

lemma integer_of_uint16_code [code]:
  "integer_of_uint16 n = integer_of_int (uint (Rep_uint16' n))"
unfolding integer_of_uint16_def by transfer auto

code_printing
  constant "integer_of_uint16" 
  (SML_word) "Word16.toInt _ : IntInf.int" and
  (Haskell) "Prelude.toInteger" and
  (Scala) "BigInt"

section ‹Quickcheck setup›

definition uint16_of_natural :: "natural  uint16"
where "uint16_of_natural x  Uint16 (integer_of_natural x)"

instantiation uint16 :: "{random, exhaustive, full_exhaustive}" begin
definition "random_uint16  qc_random_cnv uint16_of_natural"
definition "exhaustive_uint16  qc_exhaustive_cnv uint16_of_natural"
definition "full_exhaustive_uint16  qc_full_exhaustive_cnv uint16_of_natural"
instance ..
end

instantiation uint16 :: narrowing begin

interpretation quickcheck_narrowing_samples
  "λi. let x = Uint16 i in (x, 0xFFFF - x)" "0"
  "Typerep.Typerep (STR ''Uint16.uint16'') []" .

definition "narrowing_uint16 d = qc_narrowing_drawn_from (narrowing_samples d) d"
declare [[code drop: "partial_term_of :: uint16 itself  _"]]
lemmas partial_term_of_uint16 [code] = partial_term_of_code

instance ..
end

end