Theory Heap_Monad_Ext
subsection ‹Heap Monad›
theory Heap_Monad_Ext
imports "HOL-Imperative_HOL.Imperative_HOL"
begin
definition fun_app_lifted :: "('a ⇒ 'b Heap) Heap ⇒ 'a Heap ⇒ 'b Heap" where
"fun_app_lifted f⇩T x⇩T ≡ do { f ← f⇩T; x ← x⇩T; f x }"
bundle heap_monad_syntax begin
notation fun_app_lifted (infixl ‹.› 999)
type_synonym ('a, 'b) fun_lifted = "'a ⇒ 'b Heap" (‹_ ==H⟹ _› [3,2] 2)
type_notation Heap (‹[_]›)
notation Heap_Monad.return (‹⟨_⟩›)
notation (ASCII) Heap_Monad.return (‹(#_#)›)
notation Transfer.Rel (‹Rel›)
end
context includes heap_monad_syntax begin
qualified lemma return_app_return:
"⟨f⟩ . ⟨x⟩ = f x"
unfolding fun_app_lifted_def return_bind ..
qualified lemma return_app_return_meta:
"⟨f⟩ . ⟨x⟩ ≡ f x"
unfolding return_app_return .
qualified definition if⇩T :: "bool Heap ⇒ 'a Heap ⇒ 'a Heap ⇒ 'a Heap" where
"if⇩T b⇩T x⇩T y⇩T ≡ do {b ← b⇩T; if b then x⇩T else y⇩T}"
end
end