Theory RCLogic

(*<*)
theory RCLogic
  imports Wellformed
begin
  (*>*)

hide_const Syntax.dom

chapter ‹Refinement Constraint Logic›

text ‹ Semantics for the logic we use in the refinement constraints. It is a multi-sorted, quantifier free
logic with polymorphic datatypes and linear arithmetic. We could have modelled by using one of the 
encodings to FOL however we wanted to explore using a more direct model. ›

section ‹Evaluation and Satisfiability›

subsection ‹Valuation›

text ‹ Refinement constraint logic values. SUt is a value for the uninterpreted 
       sort that corresponds to basic type variables. For now we only need one of these universes.
       We wrap an smt\_val inside it during a process we call 'boxing' 
       which is introduced in the RCLogicL theory ›
nominal_datatype rcl_val = SBitvec "bit list" | SNum int | SBool bool | SPair rcl_val rcl_val | 
  SCons tyid string rcl_val | SConsp tyid string b rcl_val |
  SUnit | SUt rcl_val 

text ‹ RCL sorts. Represent our domains. The universe is the union of all of the these.
        S\_Ut is the single uninterpreted sort. These map almost directly to basic type 
        but we have them to distinguish syntax (basic types) and semantics (RCL sorts) ›
nominal_datatype rcl_sort = S_bool | S_int | S_unit | S_pair rcl_sort rcl_sort | S_id tyid | S_app tyid rcl_sort | S_bitvec | S_ut 

type_synonym valuation = "(x,rcl_val) map"

type_synonym type_valuation = "(bv,rcl_sort) map"

text ‹Well-sortedness for RCL values›
inductive wfRCV:: "Θ  rcl_val  b  bool" ( ‹ _   _ : _› [50,50] 50) where
  wfRCV_BBitvecI:  "P  (SBitvec bv)  : B_bitvec"
| wfRCV_BIntI:  "P  (SNum n)  : B_int"
| wfRCV_BBoolI: "P  (SBool b) : B_bool"
| wfRCV_BPairI: " P  s1 : b1 ; P  s2 : b2   P  (SPair s1 s2) : (B_pair b1 b2)"
| wfRCV_BConsI: "  AF_typedef s dclist  set Θ;
      (dc,  x : b  | c )  set dclist ;
     Θ  s1 : b   Θ (SCons s dc s1) : (B_id s)"
| wfRCV_BConsPI:" AF_typedef_poly s bv dclist  set Θ;
      (dc,  x : b  | c )  set dclist ;
       atom bv  (Θ, SConsp s dc b' s1, B_app s b');
     Θ  s1 : b[bv::=b']bb   Θ (SConsp s dc b' s1) : (B_app s b')"
| wfRCV_BUnitI: "P  SUnit : B_unit"
| wfRCV_BVarI: "P  (SUt n) : (B_var bv)"
equivariance wfRCV
nominal_inductive wfRCV 
  avoids wfRCV_BConsPI: bv
proof(goal_cases)
  case (1 s bv dclist Θ dc x b c b' s1)
  then show ?case using fresh_star_def by auto
next
  case (2 s bv dclist Θ dc x b c s1 b')
  then show ?case by auto
qed

inductive_cases wfRCV_elims :
  "wfRCV P s  B_bitvec"
  "wfRCV P s (B_pair b1 b2)"
  "wfRCV P s (B_int)"
  "wfRCV P s (B_bool)"
  "wfRCV P s (B_id ss)"
  "wfRCV P s (B_var bv)"
  "wfRCV P s (B_unit)"
  "wfRCV P s (B_app tyid b)"
  "wfRCV P (SBitvec bv) b"
  "wfRCV P (SNum n)  b"
  "wfRCV P (SBool n)  b"
  "wfRCV P (SPair s1 s2) b"
  "wfRCV P (SCons s dc s1) b"
  "wfRCV P (SConsp s dc b' s1) b"
  "wfRCV P SUnit b"
  "wfRCV P (SUt s1) b"

text ‹ Sometimes we want to assert @{text "P ⊢ s ~ b[bv=b']"} and we want to know what b is 
however substitution is not injective so we can't write this in terms of @{text "wfRCV"}. 
So we define a relation that makes the components of the substitution explicit. ›

inductive wfRCV_subst:: "Θ  rcl_val  b  (bv*b) option  bool" where
  wfRCV_subst_BBitvecI:  "wfRCV_subst P (SBitvec bv) B_bitvec  sub "
| wfRCV_subst_BIntI:  "wfRCV_subst P (SNum n)  B_int sub "
| wfRCV_subst_BBoolI: "wfRCV_subst P (SBool b)  B_bool sub  "
| wfRCV_subst_BPairI: " wfRCV_subst P s1 b1 sub ; wfRCV_subst P s2 b2 sub   wfRCV_subst P (SPair s1 s2) (B_pair b1 b2) sub"
| wfRCV_subst_BConsI: "  AF_typedef s dclist  set Θ;
      (dc,  x : b  | c )  set dclist ;
     wfRCV_subst Θ s1 b None   wfRCV_subst Θ (SCons s dc s1) (B_id s) sub"
| wfRCV_subst_BConspI: "  AF_typedef_poly s bv dclist  set Θ;
      (dc,  x : b  | c )  set dclist ;
     wfRCV_subst Θ s1 (b[bv::=b']bb) sub    wfRCV_subst Θ (SConsp s dc b' s1) (B_app s b') sub"
| wfRCV_subst_BUnitI: "wfRCV_subst P SUnit B_unit sub "
| wfRCV_subst_BVar1I: "bvar  bv  wfRCV_subst P (SUt n) (B_var bv)  (Some (bvar,bin))"
| wfRCV_subst_BVar2I: " bvar = bv; wfRCV_subst P s bin None   wfRCV_subst P s (B_var bv)  (Some (bvar,bin))"
| wfRCV_subst_BVar3I: "wfRCV_subst P (SUt n) (B_var bv)  None"
equivariance wfRCV_subst
nominal_inductive wfRCV_subst .

subsection ‹Evaluation base-types›

inductive eval_b :: "type_valuation  b  rcl_sort  bool"  ( ‹_  _  ~ _ › ) where
  "v  B_bool  ~ S_bool"
| "v  B_int  ~ S_int"
| "Some s = v bv  v  B_var bv  ~ s"
equivariance eval_b
nominal_inductive eval_b .

subsection ‹Wellformed vvaluations›

definition wfI ::  "Θ  Γ  valuation  bool" ( ‹ _ ; _  _› )  where
  "Θ ; Γ  i = ( (x,b,c)  toSet Γ. s. Some s = i x  Θ  s : b)"

subsection ‹Evaluating Terms›

nominal_function eval_l :: "l  rcl_val" (  _  ) where
  " L_true  = SBool True"
|  " L_false  = SBool False"
|  " L_num n  = SNum n"
|  " L_unit  = SUnit"
|  " L_bitvec n  = SBitvec n"
                   apply(auto simp: eqvt_def eval_l_graph_aux_def)
  by (metis l.exhaust)
nominal_termination (eqvt) by lexicographic_order

inductive eval_v :: "valuation  v  rcl_val  bool"  ( ‹_  _  ~ _ › ) where
  eval_v_litI:   "i  V_lit l  ~  l  "
| eval_v_varI: "Some sv = i x   i  V_var x  ~ sv"
| eval_v_pairI: " i  v1  ~ s1 ; i  v2  ~ s2   i  V_pair v1 v2  ~ SPair s1 s2"
| eval_v_consI: "i  v  ~ s  i  V_cons tyid dc v  ~ SCons tyid dc s"
| eval_v_conspI: "i  v  ~ s  i  V_consp tyid dc b v  ~ SConsp tyid dc b s"
equivariance eval_v
nominal_inductive eval_v .

inductive_cases eval_v_elims:
  "i  V_lit l  ~  s"
  "i  V_var x  ~  s"
  "i  V_pair v1 v2  ~ s"
  "i  V_cons tyid dc v  ~ s"
  "i  V_consp tyid dc b v  ~ s"

inductive eval_e :: "valuation  ce  rcl_val  bool" ( ‹_  _  ~ _ › )  where
  eval_e_valI: "i  v  ~  sv  i  CE_val v  ~ sv"
| eval_e_plusI: " i  v1  ~ SNum n1; i  v2  ~ SNum n2     i  (CE_op Plus v1 v2)  ~ (SNum (n1+n2))"
| eval_e_leqI: " i  v1  ~ (SNum n1); i  v2  ~ (SNum n2)    i  (CE_op LEq v1 v2)  ~ (SBool (n1  n2))"
| eval_e_eqI: " i  v1  ~ s1; i  v2  ~ s2    i  (CE_op Eq v1 v2)  ~ (SBool (s1 = s2))"
| eval_e_fstI: " i  v  ~ SPair v1 v2    i  (CE_fst v)  ~ v1"
| eval_e_sndI: " i  v  ~ SPair v1 v2    i  (CE_snd v)  ~ v2"
| eval_e_concatI:" i  v1  ~ (SBitvec bv1); i  v2  ~ (SBitvec bv2)   i  (CE_concat v1 v2)  ~ (SBitvec (bv1@bv2))"
| eval_e_lenI:" i  v   ~ (SBitvec bv)   i  (CE_len v)  ~ (SNum (int (List.length bv)))"
equivariance eval_e
nominal_inductive eval_e .

inductive_cases eval_e_elims:
  "i  (CE_val v)  ~ s"
  "i  (CE_op Plus v1 v2)  ~ s"
  "i  (CE_op LEq v1 v2)  ~ s"
  "i  (CE_op Eq v1 v2)  ~ s"
  "i  (CE_fst v)  ~ s"
  "i  (CE_snd v)  ~ s"
  "i  (CE_concat v1 v2)  ~ s"
  "i  (CE_len v)  ~ s"

inductive eval_c :: "valuation  c  bool  bool" ( ‹ _  _  ~ _ ›)  where
  eval_c_trueI:  "i  C_true  ~ True"
| eval_c_falseI:"i  C_false  ~ False"
| eval_c_conjI: " i  c1  ~ b1 ; i  c2  ~ b2    i  (C_conj c1 c2)  ~  (b1  b2)"
| eval_c_disjI: " i  c1  ~ b1 ; i  c2  ~ b2    i  (C_disj c1 c2)  ~ (b1  b2)"
| eval_c_impI:" i  c1  ~ b1 ; i  c2  ~ b2    i  (C_imp c1 c2)  ~ (b1  b2)"
| eval_c_notI:" i  c  ~ b   i  (C_not c)  ~ (¬ b)"
| eval_c_eqI:" i  e1  ~ sv1; i  e2  ~ sv2   i  (C_eq e1 e2)  ~ (sv1=sv2)"
equivariance eval_c
nominal_inductive eval_c .

inductive_cases eval_c_elims:
  "i  C_true  ~  True"
  "i  C_false  ~ False"
  "i  (C_conj c1 c2) ~ s"
  "i  (C_disj c1 c2) ~ s"
  "i  (C_imp c1 c2) ~ s"
  "i  (C_not c)  ~ s"
  "i  (C_eq e1 e2) ~ s"
  "i  C_true  ~ s"
  "i  C_false  ~ s"

subsection ‹Satisfiability›

inductive  is_satis :: "valuation  c  bool" ( ‹ _  _ › ) where
  "i  c  ~ True  i  c"
equivariance is_satis
nominal_inductive is_satis .

nominal_function is_satis_g :: "valuation  Γ  bool" ( ‹ _  _ › ) where
  "i  GNil = True"
| "i  ((x,b,c) #Γ G) = ( i  c   i  G)"
       apply(auto simp: eqvt_def is_satis_g_graph_aux_def)
  by (metis Γ.exhaust old.prod.exhaust)
nominal_termination (eqvt) by lexicographic_order

section ‹Validity›

nominal_function  valid :: "Θ    Γ  c  bool"  (‹_ ; _ ; _   _ › [50, 50] 50)  where
  "P ; B ; G  c = ( (P ; B ; G wf c)  (i. (P ; G  i)   i  G  i  c))"
  by (auto simp: eqvt_def wfI_def valid_graph_aux_def)
nominal_termination (eqvt) by lexicographic_order

section ‹Lemmas›
text ‹Lemmas needed for Examples›

lemma valid_trueI [intro]:
  fixes G::Γ
  assumes "P ; B wf G"
  shows "P ; B ; G  C_true"
proof -
  have "i. i  C_true" using is_satis.simps eval_c_trueI by simp
  moreover have "P ; B ; G wf C_true" using wfC_trueI assms by simp
  ultimately show ?thesis using valid.simps by simp
qed

end