Theory Max_Flow_Min_Cut_Countable
theory Max_Flow_Min_Cut_Countable imports
MFMC_Bounded
MFMC_Unbounded
begin
section ‹The Max-Flow Min-Cut theorem›
theorem max_flow_min_cut_countable:
fixes Δ (structure)
assumes countable_E [simp]: "countable ❙E"
and source_neq_sink [simp]: "source Δ ≠ sink Δ"
and capacity_outside: "∀e. e ∉ ❙E ⟶ capacity Δ e = 0"
and capacity_finite [simp]: "∀e. capacity Δ e ≠ ⊤"
shows "∃f S. flow Δ f ∧ cut Δ S ∧ orthogonal Δ f S"
proof -
interpret countable_network Δ using assms by(unfold_locales) auto
show ?thesis by(rule max_flow_min_cut)
qed
hide_const (open) A B weight
end