Theory Linear_Programming
theory Linear_Programming
imports
"HOL-Library.Code_Target_Int"
"LP_Preliminaries"
Farkas.Simplex_for_Reals
begin
section ‹ Abstract LPs ›
text ‹ Primal Problem ›
definition "sat_primal A b = { x. [A *⇩v x]≤b }"
text ‹ Dual Problem ›
definition "sat_dual A c = {y. [y ⇩v* A]=c ∧ (∀i<dim_vec y. y $ i ≥ 0)}"
definition "optimal_set f S = {x ∈ S. (∀y∈ S. f x y)}"
abbreviation max_lp where
"max_lp A b c ≡ optimal_set (λx y. (y ∙ c) ≤ (x ∙ c)) (sat_primal A b)"
abbreviation min_lp where
"min_lp A b c ≡ optimal_set (λx y. (y ∙ c) ≥ (x ∙ c)) (sat_dual A c)"
lemma optimal_setI[intro]:
assumes "x ∈ S"
assumes "⋀y. y ∈ S ⟹ (λx y. (y ∙ c) ≥ (x ∙ c)) x y"
shows "x ∈ optimal_set (λx y. (y ∙ c) ≥ (x ∙ c)) S"
unfolding optimal_set_def using assms
by blast
lemma max_lpI [intro]:
assumes "[A *⇩v x]≤b"
assumes "(⋀y. [A *⇩v y]≤b ⟹ (λx y. (y ∙ c) ≥ (x ∙ c)) y x)"
shows "x ∈ max_lp A b c"
using optimal_setI[of x "{ x. [A *⇩v x]≤b }" c]
unfolding optimal_set_def optimal_setI
by (simp add: assms(1) assms(2) sat_primal_def)
lemma min_lpI [intro]:
assumes "[y ⇩v* A]=c"
and "(⋀i. i<dim_vec y ⟹ y $ i ≥ 0)"
assumes "(⋀x. x ∈ sat_dual A c ⟹ (λx y. (y ∙ c) ≥ (x ∙ c)) y x)"
shows "y ∈ min_lp A b c"
using optimal_setI[of y "sat_dual A c" c]
unfolding optimal_set_def optimal_setI sat_dual_def
by (simp add: assms(1) assms(2) assms(3) sat_dual_def)
lemma sat_primalD [dest]:
assumes "x ∈ sat_primal A b"
shows "[A *⇩v x]≤b"
using assms sat_primal_def by force
lemma sat_primalI [intro]:
assumes "[A *⇩v x]≤b"
shows "x ∈ sat_primal A b"
using assms sat_primal_def by force
lemma sat_dualD [dest]:
assumes "y ∈ sat_dual A c"
shows "[y ⇩v* A]=c" "(∀i<dim_vec y. y $ i ≥ 0)"
using assms sat_dual_def apply force
using assms sat_dual_def by force
lemma sat_dualI [intro]:
assumes "[y ⇩v* A]=c" "(∀i<dim_vec y. y $ i ≥ 0)"
shows "y ∈ sat_dual A c"
using assms sat_dual_def by auto
lemma sol_dim_in_sat_primal: "x ∈ sat_primal A b ⟹ dim_vec x = dim_col A"
unfolding mat_times_vec_leq_def by (simp add: mat_times_vec_leq_def sat_primal_def)
lemma sol_dim_in_max_lp: "x ∈ max_lp A b c ⟹ dim_vec x = dim_col A"
unfolding optimal_set_def using sol_dim_in_sat_primal[of x A b] by blast
lemma sol_dim_in_sat_dual: "x ∈ sat_dual A c ⟹ dim_vec x = dim_row A"
unfolding mat_times_vec_leq_def by (simp add: sat_dual_def vec_times_mat_eq_def)
lemma sol_dim_in_min_lp: "x ∈ min_lp A b c ⟹ dim_vec x = dim_row A"
unfolding optimal_set_def using sol_dim_in_sat_dual[of x A] by blast
lemma min_lp_in_sat_dual: "x ∈ min_lp A b c ⟹ x ∈ sat_dual A c"
unfolding optimal_set_def using sol_dim_in_sat_dual[of x A] by blast
lemma max_lp_in_sat_primal: "x ∈ max_lp A b c ⟹ x ∈ sat_primal A b"
unfolding optimal_set_def using sol_dim_in_sat_dual[of x A] by blast
locale abstract_LP =
fixes A :: "('a::{comm_semiring_1,ordered_semiring,linorder}) mat"
fixes b :: "'a vec"
fixes c :: "'a vec"
fixes m
fixes n
assumes "b ∈ carrier_vec m"
assumes "c ∈ carrier_vec n"
assumes "A ∈ carrier_mat m n"
begin
lemma dim_b_row_A: "dim_vec b = dim_row A"
using abstract_LP_axioms abstract_LP_def carrier_matD(1) carrier_vecD
by metis
lemma dim_b_col_A: "dim_vec c = dim_col A"
using abstract_LP_axioms abstract_LP_def carrier_matD(2) carrier_vecD
by metis
lemma weak_duality_aux:
fixes i j
assumes "i ∈ {c ∙ x |x. x ∈ sat_primal A b}"
and "j ∈ {b ∙ y |y. y ∈ sat_dual A c}"
shows "i ≤ j"
proof -
obtain x where x: "i = c ∙ x" "[A *⇩v x]≤b"
using assms by blast
obtain y where y: "j = b ∙ y" "[y ⇩v* A]=c" "(∀i<dim_vec y. 0 ≤ y $ i)"
using assms by blast
have d1: "dim_vec x = n" using mat_times_vec_leq_def[of A x b] x
by (metis abstract_LP_axioms abstract_LP_def carrier_matD(2))
have d2: "dim_vec y = m"
by (metis abstract_LP_axioms abstract_LP_def carrier_matD(1) index_transpose_mat(3) vec_times_mat_eq_def y(2))
have "i = c ∙ x" using x by auto
also have "... = (A⇧T *⇩v y) ∙ x"
using mult_right_eq carrier_vecD y abstract_LP_def
by (metis abstract_LP_axioms calculation d1)
also have "... = (A *⇩v x) ∙ y"
using assoc_scalar_prod_mult_mat_vec[symmetric, of y m x n A] abstract_LP_axioms abstract_LP_def d1 d2
carrier_vec_dim_vec by blast
also have "... ≤ b ∙ y"
using mult_right_leq
by (metis index_transpose_mat(3) mat_times_vec_leq_def vec_times_mat_eq_def x(2) y(2) y(3))
also have "... = j" using y by simp
finally show "i ≤ j" .
qed
theorem weak_duality_theorem:
assumes "x ∈ max_lp A b c"
assumes "y ∈ min_lp A b c"
shows "x ∙ c ≤ y ∙ b"
proof -
define i where i: "i = x ∙ c"
define j where j: "j = y ∙ b"
have dx: "dim_vec x = n"
using sol_dim_in_max_lp[of x c A b, OF assms(1)] abstract_LP_axioms abstract_LP_def
carrier_matD(2) by blast
have dy: "dim_vec y = m"
using sol_dim_in_min_lp[of y c A, OF assms(2)] abstract_LP_axioms abstract_LP_def
carrier_matD(1) by blast
have *: "i ∈ {c ∙ x |x. [A *⇩v x]≤b}" using assms(1) unfolding optimal_set_def dx sat_primal_def
using abstract_LP_axioms abstract_LP_def carrier_vec_dim_vec comm_scalar_prod dx i by blast
have **: "j ∈ {b ∙ y |y. [y ⇩v* A]=c ∧ (∀i < dim_vec y. y$i ≥ 0)}"
using assms(2) unfolding optimal_set_def using abstract_LP_axioms abstract_LP_def
carrier_vec_dim_vec comm_scalar_prod dy j by blast
from weak_duality_aux[of i j] have "i ≤ j" unfolding sat_primal_def sat_dual_def
using "*" "**" by blast
then show ?thesis using i j by auto
qed
end
fun create_optimal_solutions where
"create_optimal_solutions A b c =
(case simplex (x_times_c_geq_y_times_b c b #
mat_leqb_eqc A b c @
from_index_geq0_vector (dim_vec c) (0⇩v (dim_vec b)))
of
Unsat X ⇒ Unsat X
| Sat X ⇒ Sat X)"
fun optimize_no_cond where "optimize_no_cond A b c = (case create_optimal_solutions A b c of
Unsat X ⇒ Unsat X
| Sat X ⇒ Sat (fst (split_n_m_x (dim_vec c) (dim_vec b) X)))"
lemma create_opt_sol_satisfies:
assumes "create_optimal_solutions A b c = Sat X"
shows "⟨X⟩ ⊨⇩c⇩s set ((x_times_c_geq_y_times_b c b # mat_leqb_eqc A b c @
from_index_geq0_vector (dim_vec c) (0⇩v (dim_vec b))))"
proof -
have "simplex (x_times_c_geq_y_times_b c b # mat_leqb_eqc A b c @
from_index_geq0_vector (dim_vec c) (0⇩v (dim_vec b))) = Sat X"
proof (rule ccontr)
assume "simplex (x_times_c_geq_y_times_b c b # mat_leqb_eqc A b c @ from_index_geq0_vector (dim_vec c) (0⇩v (dim_vec b))) ≠ Inr X"
then have "∃e. simplex (x_times_c_geq_y_times_b c b # mat_leqb_eqc A b c @ from_index_geq0_vector (dim_vec c) (0⇩v (dim_vec b))) = Unsat e"
by (metis assms create_optimal_solutions.simps sum.case(2) sumE)
then have "∃e. create_optimal_solutions A b c = Unsat e"
using assms option.split by force
then show False using assms(1) assms by auto
qed
then show ?thesis using simplex(3) by blast
qed
lemma create_opt_sol_sat_leq_mat:
assumes "dim_vec b = dim_row A"
assumes "create_optimal_solutions A b c = Sat X"
and "(x, y) = split_i_j_x (dim_col A) (dim_vec b) X"
shows "[A *⇩v x]≤b"
proof -
have *: "⟨X⟩ ⊨⇩c⇩s set (mat_leqb_eqc A b c)"
using create_opt_sol_satisfies[of A b c X] sat_mono[of "(mat_leqb_eqc A b c)" _ X]
using assms(2) by (metis append_Cons append_assoc in_set_conv_decomp)
then show ?thesis using mat_leqb_eqc_split_correct1[of b A c X x y, OF assms(1) *] assms
by blast
qed
lemma create_opt_sol_sat_eq_mat:
assumes "dim_vec c = dim_row A⇧T"
and "dim_vec b = dim_col A⇧T"
assumes "create_optimal_solutions A b c = Sat X"
and "(x, y) = split_i_j_x (dim_vec c) (dim_vec c + dim_vec b) X"
shows "[y ⇩v* A]=c"
proof -
have *: "⟨X⟩ ⊨⇩c⇩s set (mat_leqb_eqc A b c)"
using create_opt_sol_satisfies[of A b c X] sat_mono[of "(mat_leqb_eqc A b c)" _ X]
assms(2) assms by (metis UnCI list.set_intros(2) set_append)
have "dim_row A⇧T = dim_vec c"
using assms(1) by linarith
moreover have "dim_col A⇧T = dim_vec b"
by (simp add: assms(2))
ultimately show ?thesis
using assms by (metis mat_leqb_eqc_split_correct2[of c A b X x y, OF assms(1) assms(2) *]
‹dim_vec b = dim_col A⇧T› ‹dim_vec c = dim_row A⇧T›)
qed
lemma create_opt_sol_satisfies_leq:
assumes "create_optimal_solutions A b c = Sat X"
assumes "(x, y) = split_n_m_x (dim_vec c) (dim_vec b) X"
shows "x ∙ c ≥ y ∙ b"
using create_opt_sol_satisfies[of A b c X]
by (metis assms(1) assms(2) carrier_vec_dim_vec comm_scalar_prod list.set_intros(1)
split_n_m_x_abbrev_dims(2) split_vec_dims(1) x_times_c_geq_y_times_b_split_dotP)
lemma create_opt_sol_satisfies_geq0:
assumes "create_optimal_solutions A b c = Sat X"
assumes "(x, y) = split_n_m_x (dim_vec c) (dim_vec b) X"
shows "⋀i. i < dim_vec y ⟹ y$i ≥ 0"
proof -
fix i
assume "i < dim_vec y"
have *: "⟨X⟩ ⊨⇩c⇩s set (from_index_geq0_vector (dim_vec c) (0⇩v (dim_vec b)))"
using assms(1) create_opt_sol_satisfies by (metis UnCI append_Cons set_append)
have **: "i < dim_vec b"
by (metis ‹i < dim_vec y› assms(2) split_n_m_x_abbrev_dims(2))
then show "0 ≤ y $ i"
using from_index_geq0_vector_split_snd[of "dim_vec c" "0⇩v (dim_vec b)" X x y
"dim_vec b" i, OF * assms(2)] by simp
qed
locale rat_LP = abstract_LP A b c m n
for A ::"rat mat"
and b :: "rat vec"
and c :: "rat vec"
and m :: "nat"
and n :: "nat"
begin
lemma create_opt_sol_in_LP:
assumes "create_optimal_solutions A b c = Sat X"
assumes "(x, y) = split_n_m_x (dim_vec c) (dim_vec b) X"
shows "[A *⇩v x]≤b" "[y ⇩v* A]=c" "x ∙ c ≥ y ∙ b" "⋀i. i < dim_vec y ⟹ y$i ≥ 0"
apply (metis Pair_inject assms(1) assms(2) create_opt_sol_sat_leq_mat dim_b_col_A dim_b_row_A split_i_j_x_def)
using assms(1) assms(2) create_opt_sol_sat_eq_mat dim_b_col_A dim_b_row_A
apply (metis index_transpose_mat(2) index_transpose_mat(3))
using assms(1) assms(2) create_opt_sol_satisfies_leq apply blast
using assms(1) assms(2) create_opt_sol_satisfies_geq0 by blast
lemma create_optim_in_sols:
assumes "create_optimal_solutions A b c = Sat X"
assumes "(x, y) = split_n_m_x (dim_vec c) (dim_vec b) X"
shows "c ∙ x ∈ {c ∙ x |x. [A *⇩v x]≤b}"
"b ∙ y ∈ {b ∙ y |y. [y ⇩v* A]=c ∧ (∀i < dim_vec y. y$i ≥ 0)}"
using assms(1) assms(2) create_opt_sol_in_LP(1) apply blast
using assms(1) assms(2) create_opt_sol_in_LP(2) create_opt_sol_in_LP(4) by blast
lemma cx_leq_bx_in_creating_opt:
assumes "create_optimal_solutions A b c = Sat X"
assumes "(x, y) = split_n_m_x (dim_vec c) (dim_vec b) X"
shows "c ∙ x ≤ b ∙ y"
using weak_duality_aux[of "c ∙ x" "b ∙ y"] create_optim_in_sols[of X x y, OF assms] by auto
lemma min_max_for_sol:
assumes "create_optimal_solutions A b c = Sat X"
assumes "(x, y) = split_n_m_x (dim_vec c) (dim_vec b) X"
shows "c ∙ x = b ∙ y"
using create_opt_sol_in_LP(3)[of X x y, OF assms] cx_leq_bx_in_creating_opt[OF assms]
comm_scalar_prod[of c "dim_vec c" x] comm_scalar_prod[of b "dim_vec b" y]
by (metis add_diff_cancel_left' antisym assms(2) carrier_vec_dim_vec split_vec_dims(1) split_vec_dims(2))
lemma create_opt_solutions_correct:
assumes "create_optimal_solutions A b c = Sat X"
assumes "(x, y) = split_n_m_x (dim_vec c) (dim_vec b) X"
shows "x ∈ max_lp A b c"
proof
show "[A *⇩v x]≤b"
using assms(1) assms(2) create_opt_sol_in_LP(1) by blast
fix z
assume a: "[A *⇩v z]≤b"
have 1: "c ∙ z ∈ {c ∙ x |x. x ∈ sat_primal A b}"
using sat_primalI[of A z b, OF a] by blast
have 2: "b ∙ y ∈ {b ∙ y |y. y ∈ sat_dual A c}"
using sat_dualI
by (metis (mono_tags, lifting) assms(1) assms(2) create_opt_sol_in_LP(2)
mem_Collect_eq rat_LP.create_opt_sol_in_LP(4) rat_LP_axioms)
then have "c ∙ z ≤ b ∙ y"
using weak_duality_aux[of "c ∙ z" "b ∙ y", OF 1 2] sat_primalI[of A z b, OF a] by blast
also have "... = x ∙ c"
by (metis assms(1) assms(2) carrier_vec_dim_vec comm_scalar_prod
min_max_for_sol split_n_m_x_abbrev_dims(1))
finally show "z ∙ c ≤ x ∙ c"
by (metis a carrier_vec_dim_vec comm_scalar_prod dim_b_col_A mat_times_vec_leqD(2))
qed
lemma optimize_no_cond_correct:
assumes "optimize_no_cond A b c = Sat x"
shows "x ∈ max_lp A b c"
proof -
obtain X where X: "create_optimal_solutions A b c = Sat X"
by (metis Inr_Inl_False assms old.sum.exhaust old.sum.simps(5) optimize_no_cond.simps)
have "x = (fst (split_n_m_x (dim_vec c) (dim_vec b) X))"
using X assms by (metis old.sum.inject(2) old.sum.simps(6) optimize_no_cond.simps)
then show ?thesis
using create_opt_solutions_correct[of X x] by (metis X fst_conv old.prod.exhaust)
qed
lemma optimize_no_cond_sol_sat:
assumes "optimize_no_cond A b c = Sat x"
shows "x ∈ sat_primal A b"
using max_lp_in_sat_primal[OF optimize_no_cond_correct[OF assms]] by auto
end
fun maximize where
"maximize A b c = (if dim_vec b = dim_row A ∧ dim_vec c = dim_col A then
Some (optimize_no_cond A b c)
else None)"
lemma optimize_sound:
assumes "maximize A b c = Some (Sat x)"
shows "x ∈ max_lp A b c"
proof -
have *: "dim_vec b = dim_row A ∧ dim_vec c = dim_col A"
by (metis assms maximize.simps option.distinct(1))
then interpret rat: rat_LP A b c "dim_vec b" "dim_vec c"
by (metis abstract_LP_def carrier_mat_triv carrier_vec_dim_vec rat_LP.intro)
have "Sat x = optimize_no_cond A b c"
using assms * by auto
then show ?thesis
by (simp add: rat.optimize_no_cond_correct)
qed
lemma maximize_option_elim:
assumes "maximize A b c = Some x"
shows "dim_vec b = dim_row A" "dim_vec c = dim_col A"
by (metis assms maximize.simps option.distinct(1))+
lemma optimize_sol_dimension:
assumes "maximize A b c = Some (Sat x)"
shows "x ∈ carrier_vec (dim_col A)"
using assms carrier_dim_vec max_lp_in_sat_primal optimize_sound sol_dim_in_sat_primal by blast
lemma optimize_sat:
assumes "maximize A b c = Some (Sat x)"
shows "[A *⇩v x]≤b"
using assms maximize_option_elim[OF assms]
max_lp_in_sat_primal[OF optimize_sound[of A b c x, OF assms]] by blast
derive (eq) ceq rat
derive (linorder) compare rat
derive (compare) ccompare rat
derive (rbt) set_impl rat
derive (eq) ceq atom QDelta
derive (linorder) compare_order QDelta
derive compare_order atom
derive ccompare atom QDelta
derive (rbt) set_impl atom QDelta
lemma of_rat_val: "simplex cs = (Sat v) ⟹ of_rat_val ⟨v⟩ ⊨⇩r⇩c⇩s set cs"
using of_rat_val_constraint simplex_real(3) by blast
end