Theory LTS

theory LTS imports Main "HOL-Library.Multiset_Order" begin


section ‹LTS›


subsection ‹Transitions›

type_synonym ('state, 'label) transition = "'state × 'label × 'state"


subsection ‹LTS functions›

fun trans_hd :: "('state, 'label) transition  'state" where
  "trans_hd (s1,γ,s2) = s1"

fun trans_tl :: "('state, 'label) transition  'state" where
  "trans_tl (s1,γ,s2) = s2"

fun transitions_of :: "'state list * 'label list  ('state, 'label) transition multiset" where
  "transitions_of (s1#s2#ss, γ#w) = {# (s1, γ, s2) #} + transitions_of (s2#ss, w)"
| "transitions_of ([s1],_) = {#}"
| "transitions_of ([],_) = {#}"
| "transitions_of (_,[]) = {#}"

fun transition_list :: "'state list * 'label list  ('state, 'label) transition list" where
  "transition_list (s1#s2#ss, γ#w) = (s1, γ, s2) # (transition_list (s2#ss, w))"
| "transition_list ([s1],_) = []"
| "transition_list ([],_) = []"
| "transition_list (_,[]) = []"

fun transition_list' :: "'state * 'label list * 'state list * 'state  ('state, 'label) transition list" where
  "transition_list' (p,w,ss,q) = transition_list (ss, w)"

fun transitions_of' :: "'state * 'label list * 'state list * 'state  ('state, 'label) transition multiset" where
  "transitions_of' (p,w,ss,q) = transitions_of (ss, w)"

fun transition_list_of' where
  "transition_list_of' (p,γ#w,p'#p''#ss,q) = (p, γ, p'')#(transition_list_of' (p'',w,p''#ss,q))"
| "transition_list_of' (p, [], _, p'') = []"
| "transition_list_of' (p, _, [], p'') = []" (* Equivalent to the above *)
| "transition_list_of' (v, va # vc, [vf], ve) = []" (* Should not occur *)

fun append_path_with_word :: "('a list × 'b list)  ('a list × 'b list)  ('a list × 'b list)" (infix  65) where
  "(ss1,w1)  (ss2,w2) = (ss1@(tl ss2), w1 @ w2)"

fun append_path_with_word_γ :: "(('a list × 'b list) * 'b)  ('a list × 'b list)  ('a list × 'b list)" (infix @γ 65) where
  "((ss1,w1),γ) @γ (ss2,w2) = (ss1@ss2, w1 @ [γ] @ w2)"

fun append_trans_star_states :: "('a × 'b list × 'a list × 'a)  ('a × 'b list × 'a list × 'a)  ('a × 'b list × 'a list × 'a)" (infix @@´ 65) where
  "(p1,w1,ss1,q1) @@´ (p2,w2,ss2,q2) = (p1, w1 @ w2, ss1@(tl ss2), q2)"

fun append_trans_star_states_γ :: "(('a × 'b list × 'a list × 'a) * 'b)  ('a × 'b list × 'a list × 'a)  ('a × 'b list × 'a list × 'a)" (infix @@γ 65) where
  "((p1,w1,ss1,q1),γ) @@γ (p2,w2,ss2,q2) = (p1, w1 @ [γ] @ w2, ss1@ss2, q2)"

definition inters :: "('state, 'label) transition set  ('state, 'label) transition set  (('state * 'state), 'label) transition set" where
  "inters ts1 ts2 = {((p1, q1), α, (p2, q2)). (p1, α, p2)  ts1  (q1, α, q2)  ts2}"

definition inters_finals :: "'state set  'state set  ('state * 'state) set" where
  "inters_finals finals1 finals2 = finals1 × finals2"

lemma inters_code[code]:
  "inters ts1 ts2 = ((p1, α, p2)  ts1. (q1, α', q2)  ts2. if α = α' then {((p1, q1), α, (p2, q2))} else {})"
  unfolding inters_def by (force split: if_splits)


subsection ‹LTS locale›

locale LTS =
  fixes transition_relation :: "('state, 'label) transition set"
begin

text ‹More definitions.›

definition step_relp  :: "'state  'state  bool" (infix  80) where
  "c  c'  (l. (c, l, c')  transition_relation)"

abbreviation step_starp :: "'state  'state  bool" (infix * 80) where
  "c * c'  step_relp** c c'"

definition step_rel :: "'state rel" where 
  "step_rel = {(c, c'). step_relp c c'}"

definition step_star :: "'state rel" where 
  "step_star = {(c, c'). step_starp c c'}"

(* For a set of states C, post*(C) is the set of all states reachable from C. *)
definition post_star :: "'state set  'state set" where
  "post_star C = {c'. c  C. c * c'}"

(* And pre*(C) is the set of all states that can reach a state in C. *)
definition pre_star :: "'state set  'state set" where
  "pre_star C = {c'. c  C. c' * c}"

inductive_set path :: "'state list set" where
  "[s]  path"
| "(s'#ss)  path  (s,l,s')  transition_relation  s#s'#ss  path"

inductive_set trans_star :: "('state * 'label list * 'state) set" where
  trans_star_refl[iff]: 
  "(p, [], p)  trans_star"
| trans_star_step: 
  "(p,γ,q')  transition_relation  
   (q',w,q)  trans_star  
   (p, γ#w, q)  trans_star"

inductive_cases trans_star_empty [elim]: "(p, [], q)  trans_star"
inductive_cases trans_star_cons: "(p, γ#w, q)  trans_star"


inductive_set trans_star_states :: "('state * 'label list * 'state list * 'state) set" where
  trans_star_states_refl[iff]: 
  "(p,[],[p],p)  trans_star_states"
| trans_star_states_step: 
  "(p,γ,q')  transition_relation  
   (q',w,ss,q)  trans_star_states  
   (p, γ#w, p#ss, q)  trans_star_states"

inductive_set path_with_word :: "('state list * 'label list) set" where
  path_with_word_refl[iff]: 
  "([s],[])  path_with_word"
| path_with_word_step: 
  "(s'#ss, w)  path_with_word  
   (s,l,s')  transition_relation  
   (s#s'#ss,l#w)  path_with_word"

definition start_of :: "('state list × 'label list)  'state" where
  "start_of π = hd (fst π)"

definition end_of :: "('state list × 'label list)  'state" where
  "end_of π = last (fst π)"

abbreviation path_with_word_from :: "'state  ('state list * 'label list) set" where
  "path_with_word_from q == {π. π  path_with_word  start_of π = q}"

abbreviation path_with_word_to :: "'state  ('state list * 'label list) set" where
  "path_with_word_to q == {π. π  path_with_word  end_of π = q}"

abbreviation path_with_word_from_to :: "'state  'state  ('state list * 'label list) set" where
  "path_with_word_from_to start end == {π. π  path_with_word  start_of π = start  end_of π = end}"

inductive_set transition_list_path :: "('state, 'label) transition list set" where
  "(q, l, q')  transition_relation  
   [(q, l, q')]  transition_list_path"
| "(q, l, q')  transition_relation  
   (q', l', q'') # ts  transition_list_path  
   (q, l, q') # (q', l', q'') # ts  transition_list_path"

lemma singleton_path_start_end:
  assumes "([s], [])  LTS.path_with_word pg"
  shows "start_of ([s], []) = end_of ([s], [])"
  using assms
  by (simp add: end_of_def start_of_def) 

lemma path_with_word_length:
  assumes "(ss, w)  path_with_word"
  shows "length ss = length w + 1"
  using assms 
proof (induction rule: path_with_word.induct)
  case (path_with_word_refl s)
  then show ?case by auto
next
  case (path_with_word_step s' ss w s l)
  then show ?case by auto
qed

lemma path_with_word_lengths:
  assumes "(qs @ [qnminus1], w)  path_with_word"
  shows "length qs = length w"
  using assms 
  by (metis LTS.path_with_word_length Suc_eq_plus1 Suc_inject length_Cons length_append 
      list.size(3,4))

lemma path_with_word_butlast:
  assumes "(ss, w)  path_with_word"
  assumes "length ss  2"
  shows "(butlast ss, butlast w)  path_with_word"
  using assms 
proof (induction rule: path_with_word.induct)
  case (path_with_word_refl s)
  then show ?case
    by force
next
  case (path_with_word_step s' ss w s l)
  then show ?case
    by (metis (no_types) LTS.path_with_word.path_with_word_refl 
        LTS.path_with_word.path_with_word_step LTS.path_with_word_length One_nat_def Suc_1 
        Suc_inject Suc_leI Suc_le_mono butlast.simps(2) length_0_conv length_Cons list.distinct(1) 
        list.size(4) not_gr0)
qed

lemma transition_butlast:
  assumes "(ss, w)  path_with_word"
  assumes "length ss  2"
  shows "(last (butlast ss), last w, last ss)  transition_relation"
  using assms 
proof (induction rule: path_with_word.induct)
  case (path_with_word_refl s)
  then show ?case
    by force 
next
  case (path_with_word_step s' ss w s l)
  then show ?case
    by (metis (no_types) LTS.path_with_word_length One_nat_def Suc_1 Suc_inject Suc_leI Suc_le_mono 
        butlast.simps(2) last.simps length_Cons length_greater_0_conv list.distinct(1) list.size(4))
qed

lemma path_with_word_induct_reverse [consumes 1, case_names path_with_word_refl path_with_word_step_rev]:
  "(ss, w)  path_with_word 
   (s. P [s] []) 
   (ss s w l s'. (ss @ [s], w)  path_with_word  
                   P (ss @ [s]) w  
                   (s, l, s')  transition_relation  
                   P (ss @ [s, s']) (w @ [l])) 
     P ss w"
proof (induction "length ss" arbitrary: ss w)
  case 0
  then show ?case
    by (metis LTS.path_with_word_length Suc_eq_plus1 Zero_not_Suc)
next
  case (Suc n)

  show ?case
  proof (cases "n = 0")
    case True
    then show ?thesis
      by (metis LTS.path_with_word_length Suc.hyps(2) Suc.prems(1) Suc.prems(2) Suc_eq_plus1 Suc_inject Suc_length_conv length_0_conv)
  next
    case False
    define ss' where "ss' = butlast (butlast ss)"
    define s where "s = last (butlast ss)"
    define s' where "s' = last ss"
    define w' where "w' = butlast w"
    define l where "l = last w"

    have "length ss  2"
      using False Suc.hyps(2) by linarith

    then have s_split: "ss' @ [s, s'] = ss"
      by (metis One_nat_def Suc_1 Suc_le_mono Zero_not_Suc append.assoc append.simps(1) append_Cons 
          append_butlast_last_id le_less length_append_singleton list.size(3) s'_def s_def ss'_def 
          zero_order(3))

    have w_split: "w' @ [l] = w"
      by (metis LTS.path_with_word_length Suc.prems(1) add.commute butlast.simps(2) butlast_append
          l_def length_0_conv length_Suc_conv list.simps(3) plus_1_eq_Suc s_split 
          snoc_eq_iff_butlast w'_def)

    have ss'w'_path: "(ss' @ [s], w')  path_with_word"
      using Suc(3) path_with_word_butlast
      by (metis (no_types, lifting) 2  length ss butlast.simps(2) butlast_append list.simps(3) 
          s_split w'_def)

    have tr: "(s, l, s')  transition_relation"
      using Suc(3) s'_def s_def l_def transition_butlast 2  length ss by presburger 

    have nl: "n = length (ss' @ [s])"
      by (metis LTS.path_with_word_length Suc.hyps(2) Suc.prems(1) Suc_eq_plus1 
          length_append_singleton nat.inject ss'w'_path w_split)

    have "P (ss' @ [s]) w'"
      using Suc(1)[of "ss' @ [s]" w', OF nl ss'w'_path Suc(4)] Suc(5) by metis

    then have "P (ss' @ [s, s']) (w' @ [l])"
      using Suc(5)[of ss' s w' l s'] ss'w'_path tr by auto
    then show ?thesis
      using s_split w_split by auto
  qed
qed

lemma path_with_word_from_induct_reverse: 
  "(ss, w)  path_with_word_from start 
   (s. P [s] []) 
   (ss s w l s'. (ss @ [s], w)  path_with_word_from start  
                   P (ss @ [s]) w  
                   (s, l, s')  transition_relation  
                   P (ss @ [s, s']) (w @ [l])) 
    P ss w"
proof (induction "length ss" arbitrary: ss w)
  case 0
  then show ?case
    by (metis (no_types, lifting) Suc_eq_plus1 mem_Collect_eq nat.simps(3) path_with_word_length)
next
  case (Suc n)

  show ?case
  proof (cases "n = 0")
    case True
    then show ?thesis
      using  Suc.prems(1,2) length_0_conv list.distinct(1) path_with_word.cases
      by (metis (no_types, lifting) Suc.hyps(2) length_Suc_conv list.inject mem_Collect_eq)
  next
    case False
    define ss' where "ss' = butlast (butlast ss)"
    define s where "s = last (butlast ss)"
    define s' where "s' = last ss"
    define w' where "w' = butlast w"
    define l where "l = last w"

    have len_ss: "length ss  2"
      using False Suc.hyps(2) by linarith

    then have s_split: "ss' @ [s, s'] = ss"
      by (metis One_nat_def Suc_1 Suc_le_mono Zero_not_Suc append.assoc append.simps(1) append_Cons
          append_butlast_last_id le_less length_append_singleton list.size(3) s'_def s_def ss'_def 
          zero_order(3))

    have w_split: "w' @ [l] = w"
      by (metis (no_types, lifting) False LTS.path_with_word_length One_nat_def Suc.hyps(2) 
          Suc.prems(1) Suc_inject add.right_neutral add_Suc_right l_def list.size(3) mem_Collect_eq 
          snoc_eq_iff_butlast w'_def)

    have ss'w'_path: "(ss' @ [s], w')  path_with_word"
      using Suc(3) path_with_word_butlast len_ss
      by (metis (no_types, lifting) butlast.simps(2) butlast_append list.discI mem_Collect_eq 
          not_Cons_self2 s_split w'_def)

    have ss'w'_path_from: "(ss' @ [s], w')  path_with_word_from start"
      using Suc(3) butlast.simps(2) start_of_def list.sel(1) list.simps(3) mem_Collect_eq 
        path_with_word.simps prod.sel(1) s_def snoc_eq_iff_butlast ss'_def ss'w'_path w_split 
      by (metis (no_types, lifting) hd_append)

    have tr: "(s, l, s')  transition_relation"
      using Suc(3) s'_def s_def l_def transition_butlast len_ss by blast

    have nl: "n = length (ss' @ [s])"
      using False Suc.hyps(2) ss'_def by force

    have "P (ss' @ [s]) w'"
      using Suc(1)[of "ss' @ [s]" w', OF nl ss'w'_path_from Suc(4) ] Suc(5) by fastforce

    then have "P (ss' @ [s, s']) (w' @ [l])"
      using Suc(5)[of ss' s w' l s'] tr ss'w'_path_from by blast
    then show ?thesis
      using s_split w_split by auto
  qed
qed

inductive transition_of :: "('state, 'label) transition  'state list * 'label list  bool" where
  "transition_of (s1,γ,s2) (s1#s2#ss, γ#w)"
| "transition_of (s1,γ,s2) (ss, w)  
   transition_of (s1,γ,s2) (s#ss, μ#w)"
                                                  
lemma path_with_word_not_empty[simp]: "¬([],w)  path_with_word"
  using LTS.path_with_word.cases by blast
  
lemma trans_star_path_with_word:
  assumes "(p, w, q)  trans_star"
  shows "ss. hd ss = p  last ss = q  (ss, w)  path_with_word"
  using assms
proof (induction rule: trans_star.inducts)
  case (trans_star_refl p)
  then show ?case
    by (meson LTS.path_with_word.path_with_word_refl last.simps list.sel(1))
next
  case (trans_star_step p γ q' w q)
  then show ?case
    by (metis LTS.path_with_word.simps hd_Cons_tl last_ConsR list.discI list.sel(1))
qed

lemma trans_star_trans_star_states:
  assumes "(p, w, q)  trans_star"
  shows "ss. (p, w, ss, q)  trans_star_states"
  using assms 
proof (induction rule: trans_star.induct)
  case (trans_star_refl p)
  then show ?case by auto
next
  case (trans_star_step p γ q' w q)
  then show ?case
    by (meson LTS.trans_star_states_step)
qed

lemma trans_star_states_trans_star:
  assumes "(p, w, ss, q)  trans_star_states"
  shows "(p, w, q)  trans_star"
  using assms 
proof (induction rule: trans_star_states.induct)
  case (trans_star_states_refl p)
  then show ?case by auto
next
  case (trans_star_states_step p γ q' w q)
  then show ?case
    by (meson LTS.trans_star.trans_star_step)
qed

lemma path_with_word_trans_star:
  assumes "(ss, w)  path_with_word"
  assumes "length ss  0"
  shows "(hd ss, w, last ss)  trans_star"
  using assms
proof (induction rule: path_with_word.inducts)
  case (path_with_word_refl s)
  show ?case
    by simp 
next
  case (path_with_word_step s' ss w s l)
  then show ?case
    using LTS.trans_star.trans_star_step by fastforce
qed

lemma path_with_word_trans_star_Cons:
  assumes "(s1#ss@[s2], w)  path_with_word"
  shows "(s1, w, s2)  trans_star"
  using assms path_with_word_trans_star by force 

lemma path_with_word_trans_star_Singleton:
  assumes "([s2], w)  path_with_word"
  shows "(s2, [], s2)  trans_star"
  using assms path_with_word_trans_star by force

lemma trans_star_split:
  assumes "(p'', u1 @ w1, q)  trans_star"
  shows "q1. (p'', u1, q1)  trans_star  (q1, w1, q)  trans_star"
  using assms
proof(induction u1 arbitrary: p'')
  case Nil
  then show ?case by auto
next
  case (Cons a u1)
  then show ?case
    by (metis LTS.trans_star.trans_star_step LTS.trans_star_cons append_Cons)
qed

lemma trans_star_states_append:
  assumes "(p2, w2, w2_ss, q')  trans_star_states"
  assumes "(q', v, v_ss, q)  trans_star_states"
  shows "(p2, w2 @ v, w2_ss @ tl v_ss, q)  trans_star_states"
  using assms 
proof (induction rule: trans_star_states.induct)
  case (trans_star_states_refl p)
  then show ?case 
    by (metis append_Cons append_Nil list.sel(3) trans_star_states.simps)
next
  case (trans_star_states_step p γ q' w ss q)
  then show ?case 
    using LTS.trans_star_states.trans_star_states_step by fastforce 
qed

lemma trans_star_states_length:
  assumes "(p, u, u_ss, p1)  trans_star_states"
  shows "length u_ss = Suc (length u)"
  using assms
proof (induction rule: trans_star_states.induct)
  case (trans_star_states_refl p)
  then show ?case 
    by simp
next
  case (trans_star_states_step p γ q' w ss q)
  then show ?case 
    by simp
qed

lemma trans_star_states_last:
  assumes "(p, u, u_ss, p1)  trans_star_states"
  shows "p1 = last u_ss"
  using assms 
proof (induction rule: trans_star_states.induct)
  case (trans_star_states_refl p)
  then show ?case 
    by simp
next
  case (trans_star_states_step p γ q' w ss q)
  then show ?case 
    using LTS.trans_star_states.cases by force
qed

lemma trans_star_states_hd:
  assumes "(q', v, v_ss, q)  trans_star_states"
  shows "q' = hd v_ss"
  using assms 
proof (induction rule: trans_star_states.induct)
  case (trans_star_states_refl p)
  then show ?case 
    by simp
next
  case (trans_star_states_step p γ q' w ss q)
  then show ?case 
    by force
qed

lemma trans_star_states_transition_relation: 
  assumes "(p, γ#w_rest, ss, q)  trans_star_states"
  shows "s γ'. (s, γ', q)  transition_relation"
  using assms
proof (induction w_rest arbitrary: ss p γ)
  case Nil
  then show ?case
    by (metis LTS.trans_star_empty LTS.trans_star_states_trans_star trans_star_cons)
next
  case (Cons a w_rest)
  then show ?case
    by (meson LTS.trans_star_cons LTS.trans_star_states_trans_star trans_star_trans_star_states)
qed

lemma trans_star_states_path_with_word:
  assumes "(p, w, ss, q)  trans_star_states"
  shows "(ss,w)  path_with_word"
  using assms 
proof (induction rule: trans_star_states.induct)
  case (trans_star_states_refl p)
  then show ?case by auto
next
  case (trans_star_states_step p γ q' w ss q)
  then show ?case
    by (metis LTS.trans_star_states.simps path_with_word.path_with_word_step) 
qed

lemma path_with_word_trans_star_states:
  assumes "(ss,w)  path_with_word"
  assumes "p = hd ss"
  assumes "q = last ss"
  shows "(p, w, ss, q)  trans_star_states"
  using assms 
proof (induction arbitrary: p q rule: path_with_word.induct)
  case (path_with_word_refl s)
  then show ?case
    by simp
next
  case (path_with_word_step s' ss w s l)
  then show ?case
    using trans_star_states.trans_star_states_step by auto
qed

lemma append_path_with_word_path_with_word:
  assumes "last γ2ss = hd v_ss"
  assumes "(γ2ss, γ2ε)  path_with_word"
  assumes "(v_ss, v)  path_with_word"
  shows "(γ2ss, γ2ε)  (v_ss, v)  path_with_word"
  by (metis LTS.trans_star_states_path_with_word append_path_with_word.simps 
      path_with_word_trans_star_states assms(1,2,3) trans_star_states_append)

lemma hd_is_hd:
  assumes "(p, w, ss, q)  trans_star_states"
  assumes "(p1, γ, q1) = hd (transition_list' (p, w, ss, q))"
  assumes "transition_list' (p, w, ss, q)  []"
  shows "p = p1"
  using assms 
proof (induction rule: trans_star_states.inducts)
  case (trans_star_states_refl p)
  then show ?case 
    by auto
next
  case (trans_star_states_step p γ q' w ss q)
  then show ?case 
    by (metis LTS.trans_star_states.simps Pair_inject list.sel(1) transition_list'.simps 
        transition_list.simps(1))
qed

definition srcs :: "'state set" where
  "srcs = {p. q γ. (q, γ, p)  transition_relation}"

definition sinks :: "'state set" where
  "sinks = {p. q γ. (p, γ, q)  transition_relation}"

definition isolated :: "'state set" where
  "isolated = srcs  sinks"

lemma srcs_def2:
  "q  srcs  (q' γ. (q', γ, q)  transition_relation)"
  by (simp add: LTS.srcs_def)

lemma sinks_def2:
  "q  sinks  (q' γ. (q, γ, q')  transition_relation)"
  by (simp add: LTS.sinks_def)

lemma isolated_no_edges:
  assumes "(p, γ, q)  transition_relation"
  shows "p  isolated  q  isolated"
  using assms isolated_def srcs_def2 sinks_def2 by fastforce

lemma source_never_or_hd:
  assumes "(ss, w)  path_with_word"
  assumes "p1  srcs"
  assumes "t = (p1, γ, q1)"
  shows "count (transitions_of (ss, w)) t = 0 
           ((hd (transition_list (ss, w)) = t  count (transitions_of (ss, w)) t = 1))"
  using assms
proof (induction rule: path_with_word.induct)
  case (path_with_word_refl s)
  then show ?case
    by simp
next
  case (path_with_word_step s' ss w s l)
  then have "count (transitions_of (s' # ss, w)) t = 0 
    (hd (transition_list (s' # ss, w)) = t  count (transitions_of (s' # ss, w)) t = 1)"
    by auto
  then show ?case
  proof
    assume asm: "count (transitions_of (s' # ss, w)) t = 0"
    show ?case
    proof (cases "s = p1  l = γ  q1 = s'")
      case True
      then have "hd (transition_list (s # s' # ss, l # w)) = t  
                 count (transitions_of (s # s' # ss, l # w)) t = 1"
        using path_with_word_step asm by simp
      then show ?thesis
        by auto
    next
      case False
      then have "count (transitions_of (s # s' # ss, l # w)) t = 0"
        using path_with_word_step asm by auto
      then show ?thesis
        by auto
    qed
  next 
    assume "hd (transition_list (s' # ss, w)) = t  count (transitions_of (s' # ss, w)) t = 1"
    moreover
    have "(q γ. (q, γ, p1)  transition_relation)"
      by (meson LTS.srcs_def2 assms(2))
    ultimately
    have False
      using path_with_word_step by (auto elim: path_with_word.cases)
    then show ?case
      by auto
  qed
qed

lemma source_only_hd:
  assumes "(ss, w)  path_with_word"
  assumes "p1  srcs"
  assumes "count (transitions_of (ss, w)) t > 0"
  assumes "t = (p1, γ, q1)"
  shows "hd (transition_list (ss, w)) = t  count (transitions_of (ss, w)) t = 1"
  using source_never_or_hd assms not_gr_zero
  by metis 

lemma no_end_in_source:
  assumes "(p, w, qq)  trans_star"
  assumes "w  []"
  shows "qq  srcs"
  using assms
proof (induction rule: trans_star.induct)
  case (trans_star_refl p)
  then show ?case    
    by blast
next
  case (trans_star_step p γ q' w q)
  then show ?case 
    by (metis LTS.srcs_def2 LTS.trans_star_empty)
qed

lemma transition_list_length_Cons:
  assumes "length ss = Suc (length w)"
  assumes "hd (transition_list (ss, w)) = (p, γ, q)"
  assumes "transition_list (ss, w)  []"
  shows "w' ss'. w = γ # w'  ss = p # q # ss'"
proof (cases ss)
  case Nil
  note Nil_outer = Nil
  show ?thesis
  proof (cases w)
    case Nil
    then show ?thesis
      using assms Nil_outer by auto
  next
    case (Cons a list)
    then show ?thesis
      using assms Nil_outer by auto
  qed
next
  case (Cons a list)
  note Cons_outer = Cons
  then show ?thesis
  proof (cases w)
    case Nil
    then show ?thesis
      using assms Cons_outer by auto
  next
    case (Cons aa llist)
    with Cons_outer assms show ?thesis
      by (cases list) auto
  qed
qed

lemma transition_list_Cons:
  assumes "(p, w, ss, q)  trans_star_states"
  assumes "hd (transition_list (ss, w)) = (p, γ, q1)"
  assumes "transition_list (ss, w)  []"
  shows "w' ss'. w = γ # w'  ss = p # q1 # ss'"
  using assms transition_list_length_Cons by (metis LTS.trans_star_states_length) 

lemma nothing_after_sink:
  assumes "([q, q']@ss, γ1#w)  path_with_word"
  assumes "q'  sinks"
  shows "ss = []  w = []"
  using assms 
proof (induction rule: path_with_word.induct)
  case (path_with_word_refl s)
  then have "q'' γ. (q', γ, q'')  transition_relation"
    using sinks_def2[of "q'"]
    by auto
  with assms(1) show ?case
    by (auto elim: path_with_word.cases)
next
  case (path_with_word_step s' ss w s l)
  then show ?case
    by metis
qed

lemma count_transitions_of'_tails:
  assumes "(p, γ', q'_add)  (p1, γ, q')"
  shows "count (transitions_of' (p, γ' # w, p # q'_add # ss_rest, q)) (p1, γ, q') = 
         count (transitions_of' (q'_add, w, q'_add # ss_rest, q)) (p1, γ, q')"
  using assms by (cases w) auto
  
lemma avoid_count_zero:
  assumes "(p, w, ss, q)  trans_star_states"
  assumes "(p1, γ, q')  transition_relation"
  shows "count (transitions_of' (p, w, ss, q)) (p1, γ, q') = 0"
  using assms
proof(induction arbitrary: p rule: trans_star_states.induct)
  case (trans_star_states_refl p)
  then show ?case
    by auto
next
  case (trans_star_states_step p γ q' w ss q)
  show ?case
    by (metis trans_star_states_step trans_star_states.cases assms(2) 
        count_transitions_of'_tails transitions_of'.simps)
qed

lemma transition_list_append:
  assumes "(ss,w)  path_with_word"
  assumes "(ss',w')  path_with_word"
  assumes "last ss = hd ss'"
  shows "transition_list ((ss,w)  (ss',w')) = transition_list (ss,w) @ transition_list (ss',w')"
  using assms 
proof (induction rule: path_with_word.induct)
  case (path_with_word_refl s)
  then have "transition_list (hd ss' # tl ss', w') = transition_list (ss', w')"
    by (metis LTS.path_with_word_not_empty list.exhaust_sel)
  then show ?case
    using path_with_word_refl by auto
next
  case (path_with_word_step s' ss w s l)
  then show ?case 
    by auto
qed

lemma split_path_with_word_beginning'':
  assumes "(SS,WW)  path_with_word"
  assumes "SS = (ss @ ss')"
  assumes "length ss = Suc (length w)"
  assumes "WW = w @ w'"
  shows "(ss,w)  path_with_word"
  using assms
proof (induction arbitrary: ss ss' w w' rule: path_with_word.induct)
  case (path_with_word_refl s)
  then show ?case
    by (metis append.right_neutral append_is_Nil_conv list.sel(3) list.size(3) nat.discI 
        path_with_word.path_with_word_refl tl_append2)
next
  case (path_with_word_step s'a ssa wa s l)
  then show ?case
  proof (cases "w")
    case Nil
    then show ?thesis
      using path_with_word_step by (metis LTS.path_with_word.simps length_0_conv length_Suc_conv)
  next
    case (Cons)
    have "(s'a # ssa, wa)  LTS.path_with_word transition_relation"
      by (simp add: "path_with_word_step.hyps"(1))
    moreover
    have "s'a # ssa = tl ss @ ss'"
      by (metis "path_with_word_step.prems"(1,2) Zero_not_Suc 
          length_0_conv list.sel(3) tl_append2)
    moreover
    have "length (tl ss) = Suc (length (tl w))"
      using "path_with_word_step.prems" Cons by auto
    moreover
    have "wa = tl w @ w'"
      by (metis path_with_word_step(5,6) calculation(3) length_Suc_conv list.sel(3) list.size(3) 
          nat.simps(3) tl_append2)
    ultimately
    have "(tl ss, tl w)  LTS.path_with_word transition_relation"
      using path_with_word_step(3)[of "tl ss" ss' "tl w" w'] by auto
    then show ?thesis
      using path_with_word_step
      by (auto simp: Cons_eq_append_conv intro: path_with_word.path_with_word_step)
  qed
qed

lemma split_path_with_word_end':
  assumes "(SS,WW)  path_with_word"
  assumes "SS = (ss @ ss')"
  assumes "length ss' = Suc (length w')"
  assumes "WW = w @ w'"
  shows "(ss',w')  path_with_word"
  using assms(1) assms
proof (induction arbitrary: ss ss' w w' rule: path_with_word.induct)
  case (path_with_word_refl s)
  then show ?case
    by (metis Nil_is_append_conv Zero_not_Suc append_Nil list.sel(3) list.size(3) tl_append2)
next
  case (path_with_word_step s' ssa wa s l)
  show ?case
  proof (cases "ss")
    case Nil
    then show ?thesis
      using path_with_word_step(4,5,6,7) path_with_word_length
      by (auto simp: Cons_eq_append_conv)
  next
    case (Cons x xs)
    have "(s' # ssa, wa)  LTS.path_with_word transition_relation"
      using "path_with_word_step.hyps"(1) by blast
    moreover
    have "s' # ssa = tl ss @ ss'"
      using path_with_word_step(5) using local.Cons by auto
    moreover
    have "length ss' = Suc (length w')"
      using "path_with_word_step.prems"(3) by blast
    moreover
    have "wa = tl w @ w'"
    proof (cases "wa = []")
      assume "wa []"
      then show ?thesis
        using path_with_word_step(4-7) Cons path_with_word_length
        by (fastforce simp: Cons_eq_append_conv)
    next
      assume wa_empty: "wa = []"
      have "tl ss @ ss'  []"
        using calculation(2) by force
      then have "(butlast (tl ss @ ss') @ [last (s' # ssa)], []) = (s' # ssa, wa)"
        using wa_empty by (simp add: calculation(2))
      then have "(butlast (tl ss @ ss') @ [last (s' # ssa)], [])  LTS.path_with_word transition_relation"
        using "path_with_word_step"(1) by metis
      then have "length (butlast (tl ss @ ss')) = length ([]::'v list)"
        using LTS.path_with_word_lengths by (metis list.size(3)) 
      then have "w' = []"
        by (simp add: calculation(3))
      then show ?thesis
        using "path_with_word_step.prems"(4) by force
    qed
    ultimately
    show ?thesis
      using path_with_word_step(3)[of "tl ss" ss' w' "tl w"] by auto
  qed
qed

lemma split_path_with_word_end:
  assumes "(ss @ ss',w @ w')  path_with_word"
  assumes "length ss' = Suc (length w')"
  shows "(ss',w')  path_with_word"
  using split_path_with_word_end' assms by blast 

lemma split_path_with_word_beginning':
  assumes "(ss @ ss',w @ w')  path_with_word"
  assumes "length ss = Suc (length w)"
  shows "(ss,w)  path_with_word"
  using assms split_path_with_word_beginning'' by blast 

lemma split_path_with_word_beginning:
  assumes "(ss, w)  (ss', w')  path_with_word"
  assumes "length ss = Suc (length w)"
  shows "(ss,w)  path_with_word"
  using assms split_path_with_word_beginning'' by (metis append_path_with_word.simps) 

lemma path_with_word_remove_last':
  assumes "(SS, W)  path_with_word"
  assumes "SS = ss @ [s, s']"
  assumes "W = w @ [l]"
  shows "(ss @ [s], w)  path_with_word"
  using assms
proof (induction arbitrary: ss w rule: path_with_word_induct_reverse)
  case (path_with_word_refl s)
  then show ?case 
    by auto
next
  case (path_with_word_step_rev ss s w l s')
  then show ?case 
    by auto
qed

lemma path_with_word_remove_last:
  assumes "(ss @ [s, s'], w @ [l])  path_with_word"
  shows "(ss @ [s], w)  path_with_word"
  using path_with_word_remove_last' assms by auto

lemma transition_list_append_edge:
  assumes "(ss @ [s, s'], w @ [l])  path_with_word"
  shows "transition_list (ss @ [s, s'], w @ [l]) = transition_list (ss @ [s], w) @ [(s, l, s')]"
proof -
  have "(ss @ [s], w)  path_with_word"
    using assms path_with_word_remove_last by auto
  moreover
  have "([s, s'], [l])  path_with_word"
    using assms length_Cons list.size(3) by (metis split_path_with_word_end') 
  moreover
  have "last (ss @ [s]) = hd [s, s']"
    by auto
  ultimately
  show ?thesis
    using transition_list_append[of "ss @ [s]" w "[s, s']" "[l]"] by auto
qed

end


subsection ‹More LTS lemmas›

lemma hd_transition_list_append_path_with_word:
  assumes "hd (transition_list (ss, w)) = (p1, γ, q1)"
  assumes "transition_list (ss, w)  []"
  shows  "([p1, q1], [γ])  (tl ss, tl w) = (ss, w)"
proof -
  have "p1 # q1 # tl (tl ss) = ss  γ # tl w = w"
  proof (cases ss)
    case Nil
    note Nil_outer = Nil
    show ?thesis
    proof (cases w)
      case Nil
      then show ?thesis
        using assms Nil_outer by auto
    next
      case (Cons a list)
      then show ?thesis 
        using assms Nil_outer by auto
    qed
  next
    case (Cons a list)
    note Cons_outer = Cons
    show ?thesis
    proof (cases w)
      case Nil
      then show ?thesis
        using assms Cons_outer using list.collapse by (metis transition_list.simps(2,4)) 
    next
      case (Cons aa llist)
      have "p1 = a"
        using assms Cons Cons_outer
        by (metis Pair_inject list.exhaust list.sel(1) transition_list.simps(1,2))
      moreover
      have "q1 # tl list = list"
        using assms Cons Cons_outer
        by (cases list) auto
      moreover
      have "γ = aa"
        by (metis Cons_outer Pair_inject assms(1) calculation(2) list.sel(1) local.Cons 
            transition_list.simps(1))
      ultimately
      show ?thesis
        using assms Cons_outer Cons by auto
    qed
  qed
  then show ?thesis 
    by auto
qed

lemma counting:
  "count (transitions_of' ((hdss1,ww1,ss1,lastss1))) (s1, γ, s2) = 
   count (transitions_of ((ss1,ww1))) (s1, γ, s2)"
  by force

lemma count_append_path_with_word_γ:
  assumes "length ss1 = Suc (length ww1)"
  assumes "ss2  []"
  shows "count (transitions_of (((ss1,ww1),γ') @γ (ss2,ww2))) (s1, γ, s2) =
           count (transitions_of (ss1,ww1)) (s1, γ, s2) + 
           (if s1 = last ss1  s2 = hd ss2  γ = γ' then 1 else 0) +
           count (transitions_of (ss2,ww2)) (s1, γ, s2)"
using assms proof (induction ww1 arbitrary: ss1)
  case Nil
  note Nil_outer = Nil
  obtain s where s_p: "ss1 = [s]"
    by (metis Suc_length_conv length_0_conv local.Nil(1))
  then show ?case
  proof (cases ss2)
    case Nil
    then show ?thesis
      using assms by blast
  next
    case (Cons s2' ss2')
    then show ?thesis 
    proof (cases "s1 = s2'")
      case True
      then show ?thesis
        by (simp add: local.Cons s_p)
    next
      case False
      then show ?thesis
        using s_p local.Cons by fastforce
    qed
  qed
next
  case (Cons w ww11)
  obtain s2' ss2' where s2'_ss2'_p: "ss2 = s2' # ss2'"
    by (meson assms list.exhaust)
  obtain s1' ss1' where s1'_ss1'_p: "ss1 = s1' # ss1'"
    by (meson Cons.prems(1) length_Suc_conv)
  show ?case
    using Cons(1)[of "ss1'"] Cons(2-) s2'_ss2'_p s1'_ss1'_p
    by (auto simp: length_Suc_conv)
qed

lemma count_append_path_with_word:
  assumes "length ss1 = Suc (length ww1)"
  assumes "ss2  []"
  assumes "last ss1 = hd ss2"
  shows "count (transitions_of (((ss1, ww1))  (ss2, ww2))) (s1, γ, s2) =
           count (transitions_of (ss1, ww1)) (s1, γ, s2) + 
           count (transitions_of (ss2, ww2)) (s1, γ, s2)"
using assms proof (induction ww1 arbitrary: ss1)
  case Nil
  note Nil_outer = Nil
  obtain s where s_p: "ss1 = [s]"
    by (metis Suc_length_conv length_0_conv local.Nil(1))
  then show ?case
  proof (cases ss2)
    case Nil
    then show ?thesis
      using assms by blast
  next
    case (Cons s2' ss2')
    then show ?thesis 
    proof (cases "s1 = s2'")
      case True
      then show ?thesis
        using local.Cons s_p
        using Nil_outer(3) by auto 
    next
      case False
      then show ?thesis
        using s_p local.Cons
        using Nil_outer(3) by fastforce
    qed
  qed
next
  case (Cons w ww11)
  show ?case
    using Cons by (fastforce simp: length_Suc_conv split: if_splits)
qed

lemma count_append_trans_star_states_γ_length:
  assumes "length (ss1) = Suc (length (ww1))"
  assumes "ss2  []"
  shows "count (transitions_of' (((hdss1,ww1,ss1,lastss1),γ') @@γ (hdss2,ww2,ss2,lastss2))) (s1, γ, s2) =
           count (transitions_of' (hdss1,ww1,ss1,lastss1)) (s1, γ, s2) + 
           (if s1 = last ss1  s2 = hd ss2  γ = γ' then 1 else 0) + 
           count (transitions_of' (hdss2,ww2,ss2,lastss2)) (s1, γ, s2)"
  using assms count_append_path_with_word_γ by force

lemma count_append_trans_star_states_γ:
  assumes "(hdss1,ww1,ss1,lastss1)  LTS.trans_star_states A"
  assumes "(hdss2,ww2,ss2,lastss2)  LTS.trans_star_states A"
  shows "count (transitions_of' (((hdss1,ww1,ss1,lastss1),γ') @@γ (hdss2,ww2,ss2,lastss2))) (s1, γ, s2) =
           count (transitions_of' (hdss1,ww1,ss1,lastss1)) (s1, γ, s2) + 
           (if s1 = last ss1  s2 = hd ss2  γ = γ' then 1 else 0) + 
           count (transitions_of' (hdss2,ww2,ss2,lastss2)) (s1, γ, s2)"
proof -
  have "length (ss1) = Suc (length (ww1))"
    by (meson LTS.trans_star_states_length assms(1))
  moreover
  have "ss2  []"
    by (metis LTS.trans_star_states.simps assms(2) list.discI)
  ultimately 
  show ?thesis
    using count_append_trans_star_states_γ_length by metis
qed

lemma count_append_trans_star_states_length:
  assumes "length (ss1) = Suc (length (ww1))"
  assumes "ss2  []"
  assumes "last ss1 = hd ss2"
  shows "count (transitions_of' (((hdss1,ww1,ss1,lastss1)) @@´ (hdss2,ww2,ss2,lastss2))) (s1, γ, s2) =
           count (transitions_of' (hdss1,ww1,ss1,lastss1)) (s1, γ, s2) + 
           count (transitions_of' (hdss2,ww2,ss2,lastss2)) (s1, γ, s2)"
  using count_append_path_with_word[OF assms(1) assms(2) assms(3), of ww2 s1 γ s2] by auto

lemma count_append_trans_star_states:
  assumes "(hdss1,ww1,ss1,lastss1)  LTS.trans_star_states A"
  assumes "(lastss1,ww2,ss2,lastss2)  LTS.trans_star_states A"
  shows "count (transitions_of' (((hdss1,ww1,ss1,lastss1)) @@´ (lastss1,ww2,ss2,lastss2))) (s1, γ, s2) =
           count (transitions_of' (hdss1,ww1,ss1,lastss1)) (s1, γ, s2) + 
           count (transitions_of' (lastss1,ww2,ss2,lastss2)) (s1, γ, s2)"
proof -
  have "length (ss1) = Suc (length (ww1))"
    by (meson LTS.trans_star_states_length assms(1))
  moreover
  have "last ss1 = hd ss2"
    by (metis LTS.trans_star_states_hd LTS.trans_star_states_last assms(1) assms(2))
  moreover
  have "ss2  []"
    by (metis LTS.trans_star_states_length Zero_not_Suc assms(2) list.size(3))
  ultimately
  show ?thesis
    using count_append_trans_star_states_length assms by auto
qed


context fixes Δ :: "('state, 'label) transition set" begin
fun reach where
  "reach p [] = {p}"
| "reach p (γ#w) = 
    (q'  ((p',γ',q')  Δ. if p' = p  γ' = γ then {q'} else {}).
      reach q' w)"
end
lemma trans_star_imp_exec: "(p,w,q)  LTS.trans_star Δ  q  reach Δ p w"
  by (induct p w q rule: LTS.trans_star.induct[of _ _ _ Δ, consumes 1]) force+
lemma reach_imp: "q  reach Δ p w  (p,w,q)  LTS.trans_star Δ"
  by (induct p w rule: reach.induct)
    (auto intro!: LTS.trans_star_refl[of _ Δ] LTS.trans_star_step[of _ _ _ Δ] split: if_splits)
lemma trans_star_code[code_unfold]: "(p,w,q)  LTS.trans_star Δ  q  reach Δ p w"
  by (meson reach_imp trans_star_imp_exec)

lemma subset_srcs_code[code_unfold]:
  "X  LTS.srcs A  (q  X. q  snd ` snd ` A)"
  by (auto simp add: LTS.srcs_def image_iff)


lemma LTS_trans_star_mono:
  "mono LTS.trans_star"
proof (rule, rule)
  fix pwq :: "'a × 'b list × 'a"
  fix ts ts' :: "('a, 'b) transition set"
  assume sub: "ts  ts'"
  assume pwq_ts: "pwq  LTS.trans_star ts"
  then obtain p w q where pwq_p: "pwq = (p, w, q)"
    using prod_cases3 by blast
  then have "(p, w, q)  LTS.trans_star ts"
    using pwq_ts by auto
  then have "(p, w, q)   LTS.trans_star ts'"
  proof(induction w arbitrary: p)
    case Nil
    then show ?case
      by (metis LTS.trans_star.trans_star_refl LTS.trans_star_empty)
  next
    case (Cons γ w)
    then show ?case
      by (meson LTS.trans_star.simps LTS.trans_star_cons sub subsetD)
  qed
  then show "pwq  LTS.trans_star ts'"
    unfolding pwq_p .
qed

lemma count_next_0:
  assumes "count (transitions_of (s # s' # ss, l # w)) (p1, γ, q') = 0"
  shows "count (transitions_of (s' # ss, w)) (p1, γ, q') = 0"
  using assms by (cases "s = p1  l = γ  s' = q'") auto

lemma count_next_hd:
  assumes "count (transitions_of (s # s' # ss, l # w)) (p1, γ, q') = 0"
  shows "(s, l, s')  (p1, γ, q')"
  using assms by auto

lemma count_empty_zero: "count (transitions_of' (p, [], [p_add], p_add)) (p1, γ, q') = 0"
  by simp

lemma count_zero_remove_path_with_word:
  assumes "(ss, w)  LTS.path_with_word Ai"
  assumes "0 = count (transitions_of (ss, w)) (p1, γ, q')"
  assumes "Ai = Aiminus1  {(p1, γ, q')}"
  shows "(ss, w)  LTS.path_with_word Aiminus1"
  using assms
proof (induction rule: LTS.path_with_word.induct[OF assms(1)])
  case (1 s)
  then show ?case
    by (simp add: LTS.path_with_word.path_with_word_refl)
next
  case (2 s' ss w s l)
  from 2(5) have "0 = count (transitions_of (s' # ss, w)) (p1, γ, q')"
    using count_next_0 by auto
  then have s'_ss_w_Aiminus1: "(s' # ss, w)  LTS.path_with_word Aiminus1"
    using 2 by auto
  have "(s, l, s')  Aiminus1"
    using 2(2,5) assms(3) by force
  then show ?case 
    using s'_ss_w_Aiminus1 by (simp add: LTS.path_with_word.path_with_word_step) 
qed

lemma count_zero_remove_path_with_word_trans_star_states:
  assumes "(p, w, ss ,q)  LTS.trans_star_states Ai"
  assumes "0 = count (transitions_of' (p, w, ss, q)) (p1, γ, q')"
  assumes "Ai = Aiminus1  {(p1, γ, q')}"
  shows "(p, w, ss, q)  LTS.trans_star_states Aiminus1"
  using assms
proof (induction arbitrary: p rule: LTS.trans_star_states.induct[OF assms(1)])
  case (1 p)
  then show ?case
    by (metis LTS.trans_star_states.simps list.distinct(1))
next
  case (2 p' γ' q'' w ss q)
  have p_is_p': "p' = p"
    by (meson "2.prems"(1) LTS.trans_star_states.cases list.inject)
  { 
    assume len: "length ss > 0" 
    have not_found: "(p, γ', hd ss)  (p1, γ, q')"
      using LTS.trans_star_states.cases count_next_hd list.sel(1) transitions_of'.simps
      using 2(4) 2(5) by (metis len hd_Cons_tl length_greater_0_conv) 
    have hdAI: "(p, γ', hd ss)  Ai"
      by (metis "2.hyps"(1) "2.hyps"(2) LTS.trans_star_states.cases list.sel(1) p_is_p')
    have t_Aiminus1: "(p, γ', hd ss)  Aiminus1"
      using 2 hdAI not_found by force 
    have "(p, γ' # w, p' # ss, q)  LTS.trans_star_states (Aiminus1  {(p1, γ, q')})"
      using "2.prems"(1) assms(3) by fastforce
    have ss_hd_tl: "hd ss # tl ss = ss"
      using len hd_Cons_tl by blast
    moreover
    have "(hd ss, w, ss, q)  LTS.trans_star_states Ai"
      using ss_hd_tl "2.hyps"(2) using LTS.trans_star_states.cases
      by (metis list.sel(1))
    ultimately have "(hd ss, w, ss, q)  LTS.trans_star_states Aiminus1"
      using ss_hd_tl using "2.IH" "2.prems"(2) not_found assms(3) p_is_p' 
        LTS.count_transitions_of'_tails by (metis) 
    from this t_Aiminus1 have ?case
      using LTS.trans_star_states.intros(2)[of p γ' "hd ss" Aiminus1 w ss q] using p_is_p' by auto
  }
  moreover
  { 
    assume "length ss = 0"
    then have ?case
      using "2.hyps"(2) LTS.trans_star_states.cases by force
  }
  ultimately show ?case
    by auto
qed

lemma count_zero_remove_trans_star_states_trans_star:
  assumes "(p, w, ss ,q)  LTS.trans_star_states Ai"
  assumes "0 = count (transitions_of' (p, w, ss, q)) (p1, γ, q')"
  assumes "Ai = Aiminus1  {(p1, γ, q')}"
  shows "(p, w, q)  LTS.trans_star Aiminus1"
  using assms count_zero_remove_path_with_word_trans_star_states by (metis LTS.trans_star_states_trans_star)

lemma split_at_first_t:
  assumes "(p, w, ss, q)  LTS.trans_star_states Ai"
  assumes "Suc j' = count (transitions_of' (p, w, ss, q)) (p1, γ, q')"
  assumes "(p1, γ, q')  Aiminus1"
  assumes "Ai = Aiminus1  {(p1, γ, q')}"
  shows "u v u_ss v_ss. 
           ss = u_ss @ v_ss  
           w = u @ [γ] @ v  
           (p, u, u_ss, p1)  LTS.trans_star_states Aiminus1  
           (p1, [γ], q')  LTS.trans_star Ai  
           (q', v, v_ss, q)  LTS.trans_star_states Ai 
           (p, w, ss, q) = ((p, u, u_ss, p1),γ) @@γ (q', v, v_ss,q)"
  using assms
proof(induction arbitrary: p rule: LTS.trans_star_states.induct[OF assms(1)])
  case (1 p_add p)
  from 1(2) have "False"
    using count_empty_zero by auto
  then show ?case
    by auto
next
  case (2 p_add γ' q'_add w ss q p)
  then have p_add_p: "p_add = p"
    by (meson LTS.trans_star_states.cases list.inject)
  from p_add_p have p_Ai: "(p, γ', q'_add)  Ai"
    using 2(1) by auto
  from p_add_p have p_γ'_w_ss_Ai: "(p, γ' # w, p # ss, q)  LTS.trans_star_states Ai"
    using 2(4) by auto  
  from p_add_p have count_p_γ'_w_ss: "Suc j' = count (transitions_of' (p, γ' # w, p # ss, q)) (p1, γ, q')"
    using 2(5) by auto
  show ?case
  proof(cases "(p, γ', q'_add) = (p1, γ, q')")
    case True
    define u :: "'b list" where "u = []"
    define u_ss :: "'a list" where "u_ss = [p]"
    define v where "v = w"
    define v_ss where "v_ss = ss"
    have "(p, u, u_ss, p1)  LTS.trans_star_states Aiminus1"
      unfolding u_def u_ss_def using LTS.trans_star_states.intros
      using True by fastforce 
    have "(p1, [γ], q')  LTS.trans_star Ai"
      using p_Ai by (metis LTS.trans_star.trans_star_refl LTS.trans_star.trans_star_step True) 
    have "(q', v, v_ss, q)  LTS.trans_star_states Ai"
      using 2(2) True v_def v_ss_def by blast
    show ?thesis
      using Pair_inject True (p, u, u_ss, p1)  LTS.trans_star_states Aiminus1 
        (p1, [γ], q')  LTS.trans_star Ai (q', v, v_ss, q)  LTS.trans_star_states Ai 
        append_Cons p_add_p self_append_conv2 u_def u_ss_def v_def v_ss_def
      by (metis (no_types) append_trans_star_states_γ.simps)
  next
    case False
    have "hd ss = q'_add"
      by (metis LTS.trans_star_states.cases 2(2) list.sel(1))
    from this False have g: "Suc j' = count (transitions_of' (q'_add, w, ss, q)) (p1, γ, q')"
      using count_p_γ'_w_ss by (cases ss) auto
    have "u_ih v_ih u_ss_ih v_ss_ih. 
            ss = u_ss_ih @ v_ss_ih  
            w = u_ih @ [γ] @ v_ih  
            (q'_add, u_ih, u_ss_ih, p1)  LTS.trans_star_states Aiminus1  
            (p1, [γ], q')  LTS.trans_star Ai  
            (q', v_ih, v_ss_ih, q)  LTS.trans_star_states Ai"
      using 2(3)[of q'_add, OF 2(2) g 2(6) 2(7)] by auto
    then obtain u_ih v_ih u_ss_ih v_ss_ih where splitting_p:
      "ss = u_ss_ih @ v_ss_ih" 
      "w = u_ih @ [γ] @ v_ih"
      "(q'_add, u_ih, u_ss_ih, p1)  LTS.trans_star_states Aiminus1" 
      "(p1, [γ], q')  LTS.trans_star Ai" 
      "(q', v_ih, v_ss_ih, q)  LTS.trans_star_states Ai"
      by metis
    define v where "v = v_ih"
    define v_ss where "v_ss = v_ss_ih"
    define u where "u = γ' # u_ih"
    define u_ss where "u_ss = p # u_ss_ih"
    have "p_add # ss = u_ss @ v_ss"
      by (simp add: p_add_p splitting_p(1) u_ss_def v_ss_def)
    have "γ' # w = u @ [γ] @ v"
      using splitting_p(2) u_def v_def by auto
    have "(p, u, u_ss, p1)  LTS.trans_star_states Aiminus1"
      using False LTS.trans_star_states.trans_star_states_step 2(7) p_Ai splitting_p(3) u_def 
        u_ss_def by fastforce
    have "(p1, [γ], q')  LTS.trans_star Ai"
      by (simp add: splitting_p(4))
    have "(q', v, v_ss, q)  LTS.trans_star_states Ai"
      by (simp add: splitting_p(5) v_def v_ss_def)
    show ?thesis
      using (p, u, u_ss, p1)  LTS.trans_star_states Aiminus1
        (q', v, v_ss, q)  LTS.trans_star_states Ai γ' # w = u @ [γ] @ v
        p_add # ss = u_ss @ v_ss splitting_p(4)
      by auto
  qed
qed

lemma trans_star_states_mono:
  assumes "(p, w, ss, q)  LTS.trans_star_states A1"
  assumes "A1  A2"
  shows "(p, w, ss, q)  LTS.trans_star_states A2"
  using assms 
proof (induction rule: LTS.trans_star_states.induct[OF assms(1)])
  case (1 p)
  then show ?case
    by (simp add: LTS.trans_star_states.trans_star_states_refl)
next
  case (2 p γ q' w ss q)
  then show ?case
    by (meson LTS.trans_star_states.trans_star_states_step in_mono)
qed

lemma count_combine_trans_star_states_append:
  assumes "ss = u_ss @ v_ss  w = u @ [γ] @ v"
  assumes "t = (p1, γ, q')"
  assumes "(p, u, u_ss, p1)  LTS.trans_star_states A"
  assumes "(q', v, v_ss, q)  LTS.trans_star_states B"
  shows "count (transitions_of' (p, w, ss, q)) t = 
           count (transitions_of' (p, u, u_ss, p1)) t + 
           1 + 
           count (transitions_of' (q', v, v_ss, q)) t"
proof -
  have v_ss_non_empt: "v_ss  []"
    using LTS.trans_star_states.cases assms by force

  have u_ss_l: "length u_ss = Suc (length u)"
    using assms LTS.trans_star_states_length by metis

  have p1_u_ss:  "p1 = last u_ss"
    using assms LTS.trans_star_states_last by metis

  have q'_v_ss: "q' = hd v_ss"
    using assms LTS.trans_star_states_hd by metis

  have one: "(if p1 = last u_ss  q' = hd v_ss then 1 else 0) = 1"
    using p1_u_ss q'_v_ss by auto

  from count_append_trans_star_states_γ_length[of u_ss u v_ss p q γ q' v q p1 ] show ?thesis
    using assms(1) assms(2) assms(3) by (auto simp add: assms(3) one u_ss_l v_ss_non_empt)
qed

lemma count_combine_trans_star_states:
  assumes "t = (p1, γ, q')"
  assumes "(p, u, u_ss, p1)  LTS.trans_star_states A"
  assumes "(q', v, v_ss, q)  LTS.trans_star_states B"
  shows "count (transitions_of' (((p, u, u_ss, p1),γ) @@γ (q', v, v_ss, q))) t = 
        count (transitions_of' (p, u, u_ss, p1)) t + 1 + count (transitions_of' (q', v, v_ss, q)) t"
  by (metis append_trans_star_states_γ.simps assms count_combine_trans_star_states_append)

lemma transition_list_reversed_simp:
  assumes "length ss = length w"
  shows "transition_list (ss @ [s, s'], w @ [l]) = (transition_list (ss@[s],w)) @ [(s,l,s')]"
  using assms
proof (induction ss arbitrary: w)
  case Nil
  then show ?case
    by auto 
next
  case (Cons a ss)
  define w' where "w' = tl w"
  define l' where "l' = hd w"
  have w_split: "l' # w' = w"
    by (metis Cons.prems l'_def length_0_conv list.distinct(1) list.exhaust_sel w'_def)
  then have "length ss = length w'"
    using Cons.prems by force
  then have "transition_list (ss @ [s, s'], w' @ [l]) = transition_list (ss @ [s], w') @ [(s, l, s')]"
    using Cons(1)[of w'] by auto
  then have "transition_list (a # ss @ [s, s'], l' # w' @ [l]) = transition_list (a # ss @ [s], l' # w') @ [(s, l, s')]"
    by (cases ss) auto
  then show ?case
    using w_split by auto
qed

lemma LTS_trans_star_mono':
  "mono LTS.trans_star_states"
  by (auto simp: mono_def trans_star_states_mono)

lemma path_with_word_mono':
  assumes "(ss, w)  LTS.path_with_word A1"
  assumes "A1  A2"
  shows "(ss, w)  LTS.path_with_word A2"
  by (meson LTS.trans_star_states_path_with_word LTS.path_with_word_trans_star_states assms(1,2) 
      trans_star_states_mono)

lemma LTS_path_with_word_mono:
  "mono LTS.path_with_word"
  by (auto simp: mono_def path_with_word_mono')


subsection ‹Reverse transition system›

fun rev_edge :: "('n,'v) transition  ('n,'v) transition" where
  "rev_edge (qs,α,qo) = (qo, α, qs)"

lemma rev_edge_rev_edge_id[simp]: "rev_edge (rev_edge x) = x"
  by (cases x) auto

fun rev_path_with_word :: "'n list * 'v list  'n list * 'v list" where
  "rev_path_with_word (es,ls) = (rev es, rev ls)"

definition rev_edge_list :: "('n,'v) transition list  ('n,'v) transition list" where
  "rev_edge_list ts = rev (map rev_edge ts)"

context LTS begin

interpretation rev_LTS: LTS "(rev_edge ` transition_relation)"
  .

lemma rev_path_in_rev_pg:
  assumes "(ss, w)  path_with_word"
  shows "(rev ss, rev w)  rev_LTS.path_with_word"
  using assms(1) assms 
proof (induction rule: path_with_word_induct_reverse)
  case (path_with_word_refl s)
  then show ?case 
    by (simp add: LTS.path_with_word.path_with_word_refl)
next
  case (path_with_word_step_rev ss s w l s')
 have "(s', l, s)  rev_edge ` transition_relation"
    using path_with_word_step_rev by (simp add: rev_image_eqI)
  moreover 
  have "(rev (ss @ [s]), rev w)  LTS.path_with_word (rev_edge ` transition_relation)"
    using "path_with_word_step_rev.IH" "path_with_word_step_rev.hyps"(1) by blast
  then have "(s # rev ss, rev w)  LTS.path_with_word (rev_edge ` transition_relation)"
    by auto
  ultimately
  have "(s' # s # rev ss, l # rev w)  LTS.path_with_word (rev_edge ` transition_relation)"
    by (simp add: LTS.path_with_word.path_with_word_step)
  then show ?case
    by auto
qed

lemma transition_list_rev_edge_list:
  assumes "(ss,w)  path_with_word"
  shows "transition_list (rev ss, rev w) = rev_edge_list (transition_list (ss, w))"
  using assms(1) assms 
proof (induction rule: path_with_word.induct)
  case (path_with_word_refl s)
  then show ?case
    by (simp add: rev_edge_list_def)
next
  case (path_with_word_step s' ss w s l)
  have "transition_list (rev (s # s' # ss), rev (l # w)) = transition_list (rev ss @ [s', s], rev w @ [l])"
    by auto
  moreover
  have "... = transition_list (rev ss @ [s'], rev w) @ [(s', l, s)]"
    using transition_list_reversed_simp[of "rev ss" "rev w" s' s l]
    using "path_with_word_step.hyps"(1) LTS.path_with_word_lengths rev_path_in_rev_pg by fastforce
  moreover
  have "... = rev_edge_list (transition_list (s' # ss, w)) @ [(s', l, s)]"
    using path_with_word_step by auto
  moreover
  have "... = rev_edge_list ((s, l, s') # transition_list (s' # ss, w))"
    unfolding rev_edge_list_def by auto
  moreover
  have "... = rev_edge_list (transition_list (s # s' # ss, l # w))"
    by auto
  ultimately
  show ?case
    by metis
qed

end


section ‹LTS with epsilon›


subsection ‹LTS functions›

context begin

private abbreviation ε :: "'label option" where
  "ε == None"

definition inters_ε :: "('state, 'label option) transition set  ('state, 'label option) transition set  (('state * 'state), 'label option) transition set" where
  "inters_ε ts1 ts2 = 
     {((p1, q1), α, (p2, q2)) | p1 q1 α p2 q2. (p1, α, p2)  ts1  (q1, α, q2)  ts2} 
     {((p1, q1), ε, (p2, q1)) | p1 p2 q1. (p1, ε, p2)  ts1} 
     {((p1, q1), ε, (p1, q2)) | p1 q1 q2. (q1, ε, q2)  ts2}"

end


subsection ‹LTS with epsilon locale›

locale LTS_ε =  LTS transition_relation for transition_relation :: "('state, 'label option) transition set"
begin

abbreviation ε :: "'label option" where
  "ε == None"

inductive_set trans_star_ε :: "('state * 'label list * 'state) set" where
  trans_star_ε_refl[iff]: "(p, [], p)  trans_star_ε"
| trans_star_ε_step_γ: "(p, Some γ, q')  transition_relation  (q',w,q)  trans_star_ε
                            (p, γ#w, q)  trans_star_ε"
| trans_star_ε_step_ε: "(p, ε, q')  transition_relation  (q',w,q)  trans_star_ε
                            (p, w, q)  trans_star_ε"

inductive_cases trans_star_ε_empty [elim]: "(p, [], q)  trans_star_ε"
inductive_cases trans_star_cons_ε: "(p, γ#w, q)  trans_star"

definition remove_ε :: "'label option list  'label list" where
  "remove_ε w = map the (removeAll ε w)"

definition ε_exp :: "'label option list  'label list  bool" where
  "ε_exp w' w  map the (removeAll ε w') = w"

lemma trans_star_trans_star_ε:
  assumes "(p, w, q)  trans_star"
  shows "(p, map the (removeAll ε w), q)  trans_star_ε"
  using assms 
proof (induction rule: trans_star.induct)
  case (trans_star_refl p)
  then show ?case
    by simp
next
  case (trans_star_step p γ q' w q)
  show ?case
  proof (cases γ)
    case None
    then show ?thesis 
      using trans_star_step by (simp add: trans_star_ε.trans_star_ε_step_ε)
  next
    case (Some γ')
    then show ?thesis 
      using trans_star_step by (simp add: trans_star_ε.trans_star_ε_step_γ)
  qed
qed

lemma trans_star_ε_ε_exp_trans_star:
  assumes "(p, w, q)  trans_star_ε"
  shows "w'. ε_exp w' w  (p, w', q)  trans_star"
  using assms 
proof (induction rule: trans_star_ε.induct)
  case (trans_star_ε_refl p)
  then show ?case
    by (metis LTS.trans_star.trans_star_refl ε_exp_def list.simps(8) removeAll.simps(1))
next
  case (trans_star_ε_step_γ p γ q' w q)
  obtain  :: "'label option list" where
    f1: "(q', , q)  trans_star  ε_exp  w"
    using trans_star_ε_step_γ.IH by blast
  then have "ε_exp (Some γ # ) (γ # w)"
    by (simp add: LTS_ε.ε_exp_def)
  then show ?case
    using f1 by (meson trans_star.simps trans_star_ε_step_γ.hyps(1))
next
  case (trans_star_ε_step_ε p q' w q)
  then show ?case
    by (metis trans_starp.trans_star_step trans_starp_trans_star_eq ε_exp_def removeAll.simps(2))
qed

lemma trans_star_ε_iff_ε_exp_trans_star:
  "(p, w, q)  trans_star_ε  (w'. ε_exp w' w  (p, w', q)  trans_star)"
proof
  assume "(p, w, q)  trans_star_ε"
  then show "w'. ε_exp w' w  (p, w', q)  trans_star"
    using trans_star_ε_ε_exp_trans_star trans_star_trans_star_ε by auto
next
  assume "w'. ε_exp w' w  (p, w', q)  trans_star"
  then show "(p, w, q)  trans_star_ε"
    using trans_star_ε_ε_exp_trans_star trans_star_trans_star_ε ε_exp_def by auto
qed

lemma ε_exp_split':
  assumes "ε_exp u_ε (γ1 # u1)"
  shows "γ1_ε u1_ε. ε_exp γ1_ε [γ1]  ε_exp u1_ε u1  u_ε = γ1_ε @ u1_ε"
  using assms 
proof (induction u_ε arbitrary: u1 γ1)
  case Nil
  then show ?case
    by (metis LTS_ε.ε_exp_def list.distinct(1) list.simps(8) removeAll.simps(1))
next
  case (Cons a u_ε)
  then show ?case
  proof (induction a)
    case None
    then have "ε_exp u_ε (γ1 # u1)"
      using ε_exp_def by force
    then have "γ1_ε u1_ε. ε_exp γ1_ε [γ1]  ε_exp u1_ε u1  u_ε = γ1_ε @ u1_ε"
      using None(1) by auto
    then show ?case
      by (metis LTS_ε.ε_exp_def append_Cons removeAll.simps(2))
  next
    case (Some γ1')
    have "γ1' = γ1"
      using Some.prems(2) ε_exp_def by auto
    have "ε_exp u_ε u1"
      using Some.prems(2) ε_exp_def by force
    show ?case
    proof (cases u1)
      case Nil
      then show ?thesis
        by (metis Some.prems(2) ε_exp_def append_Nil2 list.simps(8) removeAll.simps(1))
    next
      case (Cons a list)
      then show ?thesis
        using LTS_ε.ε_exp_def ε_exp u_ε u1 γ1' = γ1 by force
    qed
  qed
qed

lemma remove_ε_append_dist:
  "remove_ε (w @ w') = remove_ε w @ remove_ε w'"
proof (induction w)
  case Nil
  then show ?case
    by (simp add: LTS_ε.remove_ε_def) 
next
  case (Cons a w)
  then show ?case
    by (simp add: LTS_ε.remove_ε_def)
qed

lemma remove_ε_Cons_tl:
  assumes "remove_ε w = remove_ε (Some γ' # tl w)"
  shows "γ' # remove_ε (tl w) = remove_ε w"
  using assms unfolding remove_ε_def by auto


lemma trans_star_states_trans_star_ε:
  assumes "(p, w, ss, q)  trans_star_states"
  shows "(p, LTS_ε.remove_ε w, q)  trans_star_ε"
  by (metis LTS_ε.trans_star_trans_star_ε assms remove_ε_def trans_star_states_trans_star)

lemma no_edge_to_source_ε:
  assumes "(p, [γ], qq)  trans_star_ε"
  shows "qq  srcs"
proof -
  have "w. LTS_ε.ε_exp w [γ]  (p, w, qq)  trans_star  w  []"
    by (metis (no_types) LTS_ε.ε_exp_def LTS_ε.ε_exp_split' LTS_ε.trans_star_ε_iff_ε_exp_trans_star 
        append_Cons append_Nil assms(1) list.distinct(1) list.exhaust)
  then obtain w where "LTS_ε.ε_exp w [γ]  (p, w, qq)  trans_star  w  []"
    by blast
  then show ?thesis
    using LTS.no_end_in_source[of p w qq] assms by auto
qed

lemma trans_star_not_to_source_ε:
  assumes "(p''', w, q)  trans_star_ε"
  assumes "p'''  q"
  assumes "q'  srcs"
  shows "q'  q"
  using assms 
proof (induction rule: trans_star_ε.induct)
  case (trans_star_ε_refl p)
  then show ?case
    by blast 
next
  case (trans_star_ε_step_γ p γ q' w q)
  then show ?case
    using srcs_def2 by metis 
next
  case (trans_star_ε_step_ε p q' w q)
  then show ?case
    using srcs_def2 by metis 
qed

lemma append_edge_edge_trans_star_ε:
  assumes "(p1, Some γ', p2)  transition_relation"
  assumes "(p2, Some γ'', q1)  transition_relation"
  assumes "(q1, u1, q)  trans_star_ε"
  shows "(p1, [γ', γ''] @ u1, q)  trans_star_ε"
  using assms by (metis trans_star_ε_step_γ append_Cons append_Nil)

inductive_set trans_star_states_ε :: "('state * 'label list * 'state list * 'state) set" where
  trans_star_states_ε_refl[iff]: 
  "(p,[],[p],p)  trans_star_states_ε"
| trans_star_states_ε_step_γ: 
  "(p,Some γ,q')  transition_relation  
   (q',w,ss,q)  trans_star_states_ε  
   (p, γ#w, p#ss, q)  trans_star_states_ε"
| trans_star_states_ε_step_ε: 
  "(p, ε ,q')  transition_relation  
   (q',w,ss,q)  trans_star_states_ε  
(p, w, p#ss, q)  trans_star_states_ε"

inductive_set path_with_word_ε :: "('state list * 'label list) set" where
  path_with_word_ε_refl[iff]: 
  "([s],[])  path_with_word_ε"
| path_with_word_ε_step_γ: 
  "(s'#ss, w)  path_with_word_ε  
   (s,Some l,s')  transition_relation  
   (s#s'#ss,l#w)  path_with_word_ε"
| path_with_word_ε_step_ε: 
  "(s'#ss, w)  path_with_word_ε  
   (s,ε,s')  transition_relation 
   (s#s'#ss,w)  path_with_word_ε"

lemma ε_exp_Some_length:
  assumes "ε_exp (Some α # w1') w"
  shows "0 < length w"
  using assms 
  by (metis LTS_ε.ε_exp_def length_greater_0_conv list.map(2) neq_Nil_conv option.simps(3)
      removeAll.simps(2))

lemma ε_exp_Some_hd:
  assumes "ε_exp (Some α # w1') w"
  shows "hd w = α"
  using assms 
  by (metis LTS_ε.ε_exp_def list.sel(1) list.simps(9) option.sel option.simps(3) removeAll.simps(2)) 

lemma exp_empty_empty:
  assumes "ε_exp [] w"
  shows "w = []"
  using assms by (metis LTS_ε.ε_exp_def list.simps(8) removeAll.simps(1))

end


subsection ‹More LTS lemmas›

lemma LTS_ε_trans_star_ε_mono:
  "mono LTS_ε.trans_star_ε"
proof (rule, rule)
  fix pwq :: "'a × 'b list × 'a"
  fix ts ts' :: "('a, 'b option) transition set"
  assume sub: "ts  ts'"
  assume pwq_ts: "pwq  LTS_ε.trans_star_ε ts"
  then obtain p w q where pwq_p: "pwq = (p, w, q)"
    using prod_cases3 by blast
  then have x: "(p, w, q)  LTS_ε.trans_star_ε ts"
    using pwq_ts by auto
  then have "(w'. LTS_ε.ε_exp w' w  (p, w', q)  LTS.trans_star ts)"
    using LTS_ε.trans_star_ε_iff_ε_exp_trans_star[of p w q ts] by auto
  then have "(w'. LTS_ε.ε_exp w' w  (p, w', q)  LTS.trans_star ts')"
    using LTS_trans_star_mono sub
    using monoD by blast
  then have "(p, w, q)   LTS_ε.trans_star_ε ts'"
    using LTS_ε.trans_star_ε_iff_ε_exp_trans_star[of p w q ts'] by auto
  then show "pwq  LTS_ε.trans_star_ε ts'"
    unfolding pwq_p .
qed

definition ε_edge_of_edge where
  "ε_edge_of_edge = (λ(a, l, b). (a, Some l, b))"

definition LTS_ε_of_LTS where
  "LTS_ε_of_LTS transition_relation = ε_edge_of_edge ` transition_relation"

end