Theory Boolean_Expression_Checkers.Boolean_Expression_Checkers_AList_Mapping
theory Boolean_Expression_Checkers_AList_Mapping
imports Main "HOL-Library.AList_Mapping" Boolean_Expression_Checkers
begin
section‹Tweaks for @{const AList_Mapping.Mapping}›
lemma AList_Mapping_update:
"map_of m k = None ⟹ Mapping.update k v (AList_Mapping.Mapping xs) = AList_Mapping.Mapping ((k,v)#xs)"
by (metis Mapping.abs_eq map_of.simps(2) prod.sel(1) prod.sel(2) update_Mapping update_conv')
fun reduce_alist :: "('a * bool) list ⇒ 'a ifex ⇒ 'a ifex"
where
"reduce_alist xs (IF x t1 t2) = (case map_of xs x of
None ⇒ mkIF x (reduce_alist ((x, True)#xs) t1) (reduce_alist ((x, False)#xs) t2) |
Some b ⇒ reduce_alist xs (if b then t1 else t2))"
| "reduce_alist _ t = t"
primrec normif_alist :: "('a * bool) list ⇒ 'a ifex ⇒ 'a ifex ⇒ 'a ifex ⇒ 'a ifex"
where
"normif_alist xs Trueif t1 t2 = reduce_alist xs t1"
| "normif_alist xs Falseif t1 t2 = reduce_alist xs t2"
| "normif_alist xs (IF x t1 t2) t3 t4 = (case map_of xs x of
None ⇒ mkIF x (normif_alist ((x, True)#xs) t1 t3 t4) (normif_alist ((x, False)#xs) t2 t3 t4) |
Some b ⇒ if b then normif_alist xs t1 t3 t4 else normif_alist xs t2 t3 t4)"
lemma reduce_alist_code [code, code_unfold]:
"reduce (AList_Mapping.Mapping xs) t = reduce_alist xs t"
by (induction t arbitrary: xs)
(auto simp: AList_Mapping_update split: option.split)
lemma normif_alist_code [code, code_unfold]:
"normif (AList_Mapping.Mapping xs) t = normif_alist xs t"
by (induction t arbitrary: xs)
(fastforce simp: AList_Mapping_update reduce_alist_code split: option.split)+
lemmas empty_Mapping [code_unfold]
end