section ‹Missing Lemmas of List›
theory DL_Missing_List
imports Main
begin
lemma nth_map_zip:
assumes "i < length xs"
assumes "i < length ys"
shows "map f (zip xs ys) ! i = f (xs ! i, ys ! i)"
using nth_zip nth_map length_zip by (simp add: assms(1) assms(2))
lemma nth_map_zip2:
assumes "i < length (map f (zip xs ys))"
shows "map f (zip xs ys) ! i = f (xs ! i, ys ! i)"
using nth_zip nth_map length_zip assms by simp
fun find_first where
"find_first a [] = undefined" |
"find_first a (x # xs) = (if x = a then 0 else Suc (find_first a xs))"
lemma find_first_le:
assumes "a ∈ set xs"
shows "find_first a xs < length xs"
using assms proof (induction xs)
case (Cons x xs)
then show ?case
using find_first.simps(2) nth_Cons_0 nth_Cons_Suc set_ConsD by auto
qed auto
lemma nth_find_first:
assumes "a ∈ set xs"
shows "xs ! (find_first a xs) = a"
using assms proof (induction xs)
case (Cons x xs)
then show ?case
using find_first.simps(2) nth_Cons_0 nth_Cons_Suc set_ConsD by auto
qed auto
lemma find_first_unique:
assumes "distinct xs"
and "i < length xs"
shows "find_first (xs ! i) xs = i"
using assms proof (induction xs arbitrary:i)
case (Cons x xs i)
then show ?case by (cases i; auto)
qed auto
end