Theory Native_Word.Code_Target_Integer_Bit
chapter ‹Bit operations for target language integers›
theory Code_Target_Integer_Bit
imports
"HOL-Library.Word"
"Code_Target_Word"
"Code_Int_Integer_Conversion"
"Word_Lib.Most_significant_bit"
"Word_Lib.Generic_set_bit"
"Word_Lib.Bit_Comprehension"
begin
section ‹More lemmas about @{typ integer}s›
context
includes integer.lifting
begin
lemma not_integer_of_nat_less_0 [simp]:
‹¬ integer_of_nat n < 0›
by transfer simp
lemma sub_integer_negative:
‹¬ Code_Numeral.sub n num.One < 0›
by transfer (simp add: sub_negative)
lemma integer_dup_eq [simp]:
‹Code_Numeral.dup = times (2 :: integer)›
by transfer simp
lemma nat_of_integer_sub_1_conv_pred_numeral [simp]:
‹nat_of_integer (Code_Numeral.sub n num.One) = pred_numeral n›
proof (transfer fixing: n)
have ‹nat (numeral n - Numeral1) = nat (numeral n) - nat Numeral1›
by (subst nat_diff_distrib) simp_all
then show ‹nat (numeral n - Numeral1) = pred_numeral n›
by simp
qed
end
section ‹Target language implementations›
text ‹
Unfortunately, this is not straightforward,
because these API functions have different signatures and preconditions on the parameters:
\begin{description}
\item[Standard ML] Shifts in IntInf are given as word, but not IntInf.
\item[Haskell] In the Data.Bits.Bits type class, shifts and bit indices are given as Int rather than Integer.
\end{description}
Additional constants take only parameters of type @{typ integer} rather than @{typ nat}
and check the preconditions as far as possible (e.g., being non-negative) in a portable way.
Manual implementations inside code\_printing perform the remaining range checks and convert
these @{typ integer}s into the right type.
For normalisation by evaluation, we derive custom code equations, because NBE
does not know these code\_printing serialisations and would otherwise loop.
›
context
includes integer.lifting and bit_operations_syntax
begin
private lemma [simp]:
‹- 1 div 2 = (- 1 :: integer)›
by (rule bit_eqI) (simp add: bit_simps flip: bit_Suc)
lemma and_integer_code [code]:
‹x AND y =
(if x = 0 then 0
else if x = - 1 then y
else (x mod 2) * (y mod 2) + push_bit 1 (drop_bit 1 x AND drop_bit 1 y))›
for x y :: integer
proof -
from and_rec [of x y]
have ‹x AND y = (x mod 2) * (y mod 2) + push_bit 1 (drop_bit 1 x AND drop_bit 1 y)›
by (simp del: push_bit_and add: odd_iff_mod_2_eq_one drop_bit_Suc)
then show ?thesis
by auto
qed
lemma or_integer_code [code]:
‹x OR y =
(if x = 0 then y
else if x = - 1 then - 1
else max (x mod 2) (y mod 2) + push_bit 1 (drop_bit 1 x OR drop_bit 1 y))›
for x y :: integer
proof -
from or_rec [of x y]
have ‹x OR y = max (x mod 2) (y mod 2) + push_bit 1 (drop_bit 1 x OR drop_bit 1 y)›
by (simp del: push_bit_or add: odd_iff_mod_2_eq_one drop_bit_Suc)
then show ?thesis
by auto
qed
lemma xor_integer_code [code]:
‹x XOR y =
(if x = 0 then y
else if x = - 1 then NOT y
else ¦x mod 2 - y mod 2¦ + push_bit 1 (drop_bit 1 x XOR drop_bit 1 y))›
for x y :: integer
proof -
from xor_rec [of x y]
have ‹x XOR y = ¦x mod 2 - y mod 2¦ + push_bit 1 (drop_bit 1 x XOR drop_bit 1 y)›
by (simp del: push_bit_xor add: odd_iff_mod_2_eq_one drop_bit_Suc) auto
then show ?thesis
by auto
qed
end
code_printing
constant "Bit_Operations.and :: integer ⇒ integer ⇒ integer" ⇀
(SML) "IntInf.andb ((_),/ (_))" and
(OCaml) "Z.logand" and
(Haskell) "((Data'_Bits..&.) :: Integer -> Integer -> Integer)" and
(Haskell_Quickcheck) "((Data'_Bits..&.) :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
(Scala) infixl 3 "&"
| constant "Bit_Operations.or :: integer ⇒ integer ⇒ integer" ⇀
(SML) "IntInf.orb ((_),/ (_))" and
(OCaml) "Z.logor" and
(Haskell) "((Data'_Bits..|.) :: Integer -> Integer -> Integer)" and
(Haskell_Quickcheck) "((Data'_Bits..|.) :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
(Scala) infixl 1 "|"
| constant "Bit_Operations.xor :: integer ⇒ integer ⇒ integer" ⇀
(SML) "IntInf.xorb ((_),/ (_))" and
(OCaml) "Z.logxor" and
(Haskell) "(Data'_Bits.xor :: Integer -> Integer -> Integer)" and
(Haskell_Quickcheck) "(Data'_Bits.xor :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
(Scala) infixl 2 "^"
| constant "Bit_Operations.not :: integer ⇒ integer" ⇀
(SML) "IntInf.notb" and
(OCaml) "Z.lognot" and
(Haskell) "(Data'_Bits.complement :: Integer -> Integer)" and
(Haskell_Quickcheck) "(Data'_Bits.complement :: Prelude.Int -> Prelude.Int)" and
(Scala) "_.unary'_~"
code_printing code_module Integer_Bit ⇀ (SML)
‹structure Integer_Bit : sig
val test_bit : IntInf.int -> IntInf.int -> bool
val set_bit : IntInf.int -> IntInf.int -> bool -> IntInf.int
val shiftl : IntInf.int -> IntInf.int -> IntInf.int
val shiftr : IntInf.int -> IntInf.int -> IntInf.int
end = struct
val maxWord = IntInf.pow (2, Word.wordSize);
fun test_bit x n =
if n < maxWord then IntInf.andb (x, IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n))) <> 0
else raise (Fail ("Bit index too large: " ^ IntInf.toString n));
fun set_bit x n b =
if n < maxWord then
if b then IntInf.orb (x, IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n)))
else IntInf.andb (x, IntInf.notb (IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n))))
else raise (Fail ("Bit index too large: " ^ IntInf.toString n));
fun shiftl x n =
if n < maxWord then IntInf.<< (x, Word.fromLargeInt (IntInf.toLarge n))
else raise (Fail ("Shift operand too large: " ^ IntInf.toString n));
fun shiftr x n =
if n < maxWord then IntInf.~>> (x, Word.fromLargeInt (IntInf.toLarge n))
else raise (Fail ("Shift operand too large: " ^ IntInf.toString n));
end; (*struct Integer_Bit*)›
code_reserved (SML) Integer_Bit
code_printing code_module Integer_Bit ⇀ (OCaml)
‹module Integer_Bit : sig
val test_bit : Z.t -> Z.t -> bool
val shiftl : Z.t -> Z.t -> Z.t
val shiftr : Z.t -> Z.t -> Z.t
end = struct
(* We do not need an explicit range checks here,
because Big_int.int_of_big_int raises Failure
if the argument does not fit into an int. *)
let test_bit x n = Z.testbit x (Z.to_int n);;
let shiftl x n = Z.shift_left x (Z.to_int n);;
let shiftr x n = Z.shift_right x (Z.to_int n);;
end;; (*struct Integer_Bit*)›
code_reserved (OCaml) Integer_Bit
code_printing code_module Integer_Bit ⇀ (Scala)
‹object Integer_Bit {
def testBit(x: BigInt, n: BigInt) : Boolean =
n.isValidInt match {
case true => x.testBit(n.toInt)
case false => sys.error("Bit index too large: " + n.toString)
}
def setBit(x: BigInt, n: BigInt, b: Boolean) : BigInt =
n.isValidInt match {
case true if b => x.setBit(n.toInt)
case true => x.clearBit(n.toInt)
case false => sys.error("Bit index too large: " + n.toString)
}
def shiftl(x: BigInt, n: BigInt) : BigInt =
n.isValidInt match {
case true => x << n.toInt
case false => sys.error("Shift index too large: " + n.toString)
}
def shiftr(x: BigInt, n: BigInt) : BigInt =
n.isValidInt match {
case true => x << n.toInt
case false => sys.error("Shift index too large: " + n.toString)
}
} /* object Integer_Bit */›
definition integer_test_bit :: ‹integer ⇒ integer ⇒ bool›
where ‹integer_test_bit x n = (if n < 0 then undefined x n else bit x (nat_of_integer n))›
lemma integer_test_bit_code [code]:
‹integer_test_bit x (Code_Numeral.Neg n) ⟷ undefined x (Code_Numeral.Neg n)›
‹integer_test_bit 0 0 ⟷ False›
‹integer_test_bit 0 (Code_Numeral.Pos n) ⟷ False›
‹integer_test_bit (Code_Numeral.Pos num.One) 0 ⟷ True›
‹integer_test_bit (Code_Numeral.Pos (num.Bit0 n)) 0 ⟷ False›
‹integer_test_bit (Code_Numeral.Pos (num.Bit1 n)) 0 ⟷ True›
‹integer_test_bit (Code_Numeral.Pos num.One) (Code_Numeral.Pos n') ⟷ False›
‹integer_test_bit (Code_Numeral.Pos (num.Bit0 n)) (Code_Numeral.Pos n') ⟷
integer_test_bit (Code_Numeral.Pos n) (Code_Numeral.sub n' num.One)›
‹integer_test_bit (Code_Numeral.Pos (num.Bit1 n)) (Code_Numeral.Pos n') ⟷
integer_test_bit (Code_Numeral.Pos n) (Code_Numeral.sub n' num.One)›
‹integer_test_bit (Code_Numeral.Neg num.One) 0 ⟷ True›
‹integer_test_bit (Code_Numeral.Neg (num.Bit0 n)) 0 ⟷ False›
‹integer_test_bit (Code_Numeral.Neg (num.Bit1 n)) 0 ⟷ True›
‹integer_test_bit (Code_Numeral.Neg num.One) (Code_Numeral.Pos n') ⟷ True›
‹integer_test_bit (Code_Numeral.Neg (num.Bit0 n)) (Code_Numeral.Pos n') ⟷
integer_test_bit (Code_Numeral.Neg n) (Code_Numeral.sub n' num.One)›
‹integer_test_bit (Code_Numeral.Neg (num.Bit1 n)) (Code_Numeral.Pos n') ⟷
integer_test_bit (Code_Numeral.Neg (n + num.One)) (Code_Numeral.sub n' num.One)›
by (simp_all add: integer_test_bit_def bit_integer_def sub_integer_negative flip: bit_not_int_iff')
code_printing constant integer_test_bit ⇀
(SML) "Integer'_Bit.test'_bit" and
(OCaml) "Integer'_Bit.test'_bit" and
(Haskell) "(Data'_Bits.testBitUnbounded :: Integer -> Integer -> Bool)" and
(Haskell_Quickcheck) "(Data'_Bits.testBitUnbounded :: Prelude.Int -> Prelude.Int -> Bool)" and
(Scala) "Integer'_Bit.testBit"
lemma bit_integer_code [code]:
"bit x n ⟷ integer_test_bit x (integer_of_nat n)"
by (simp add: integer_test_bit_def)
definition integer_set_bit :: ‹integer ⇒ integer ⇒ bool ⇒ integer›
where ‹integer_set_bit x n b = (if n < 0 then undefined x n b else set_bit x (nat_of_integer n) b)›
text ‹
OCaml.Big\_int does not have a method for changing an individual bit, so we emulate that with masks.
We prefer an Isabelle implementation, because this then takes care of the signs for AND and OR.
›
context
includes bit_operations_syntax
begin
lemma integer_set_bit_code [code]:
‹integer_set_bit x n b =
(if n < 0 then undefined x n b else
if b then x OR (push_bit (nat_of_integer n) 1)
else x AND NOT (push_bit (nat_of_integer n) 1))›
by (simp add: integer_set_bit_def set_bit_eq set_bit_def unset_bit_def)
end
code_printing constant integer_set_bit ⇀
(SML) "Integer'_Bit.set'_bit" and
(Haskell) "(Data'_Bits.genericSetBitUnbounded :: Integer -> Integer -> Bool -> Integer)" and
(Haskell_Quickcheck) "(Data'_Bits.genericSetBitUnbounded :: Prelude.Int -> Prelude.Int -> Bool -> Prelude.Int)" and
(Scala) "Integer'_Bit.setBit"
lemma set_bit_integer_code [code]:
‹set_bit x i b = integer_set_bit x (integer_of_nat i) b›
by (simp add: integer_set_bit_def)
definition integer_shiftl :: ‹integer ⇒ integer ⇒ integer›
where ‹integer_shiftl x n = (if n < 0 then undefined x n else push_bit (nat_of_integer n) x)›
lemma integer_shiftl_code [code]:
‹integer_shiftl x (Code_Numeral.Neg n) = undefined x (Code_Numeral.Neg n)›
‹integer_shiftl x 0 = x›
‹integer_shiftl x (Code_Numeral.Pos n) = integer_shiftl (Code_Numeral.dup x) (Code_Numeral.sub n num.One)›
‹integer_shiftl 0 (Code_Numeral.Pos n) = 0›
by (simp_all add: integer_shiftl_def numeral_eq_Suc sub_integer_negative ac_simps)
code_printing constant integer_shiftl ⇀
(SML) "Integer'_Bit.shiftl" and
(OCaml) "Integer'_Bit.shiftl" and
(Haskell) "(Data'_Bits.shiftlUnbounded :: Integer -> Integer -> Integer)" and
(Haskell_Quickcheck) "(Data'_Bits.shiftlUnbounded :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
(Scala) "Integer'_Bit.shiftl"
lemma shiftl_integer_code [code]:
‹push_bit n x = integer_shiftl x (integer_of_nat n)› for x :: integer
by (simp add: integer_shiftl_def)
definition integer_shiftr :: ‹integer ⇒ integer ⇒ integer›
where ‹integer_shiftr x n = (if n < 0 then undefined x n else drop_bit (nat_of_integer n) x)›
context
includes integer.lifting
begin
private lemma [simp]:
‹drop_bit (pred_numeral n) (- 1) = (- 1 :: integer)›
by (transfer fixing: n) simp
private lemma [simp]:
‹- numeral (num.Bit0 m) div (2 :: integer) = - numeral m›
by (transfer fixing: m) simp
private lemma [simp]:
‹- numeral (num.Bit1 m) div (2 :: integer) = - numeral (Num.inc m)›
by (transfer fixing: m) (simp add: add_One)
lemma integer_shiftr_code [code]:
‹integer_shiftr x (Code_Numeral.Neg n) = undefined x (Code_Numeral.Neg n)›
‹integer_shiftr x 0 = x›
‹integer_shiftr 0 (Code_Numeral.Pos n) = 0›
‹integer_shiftr (Code_Numeral.Pos num.One) (Code_Numeral.Pos n) = 0›
‹integer_shiftr (Code_Numeral.Pos (num.Bit0 n')) (Code_Numeral.Pos n) =
integer_shiftr (Code_Numeral.Pos n') (Code_Numeral.sub n num.One)›
‹integer_shiftr (Code_Numeral.Pos (num.Bit1 n')) (Code_Numeral.Pos n) =
integer_shiftr (Code_Numeral.Pos n') (Code_Numeral.sub n num.One)›
‹integer_shiftr (Code_Numeral.Neg num.One) (Code_Numeral.Pos n) = -1›
‹integer_shiftr (Code_Numeral.Neg (num.Bit0 n')) (Code_Numeral.Pos n) =
integer_shiftr (Code_Numeral.Neg n') (Code_Numeral.sub n num.One)›
‹integer_shiftr (Code_Numeral.Neg (num.Bit1 n')) (Code_Numeral.Pos n) =
integer_shiftr (Code_Numeral.Neg (Num.inc n')) (Code_Numeral.sub n num.One)›
by (simp_all add: integer_shiftr_def numeral_eq_Suc drop_bit_Suc sub_integer_negative)
end
code_printing constant integer_shiftr ⇀
(SML) "Integer'_Bit.shiftr" and
(OCaml) "Integer'_Bit.shiftr" and
(Haskell) "(Data'_Bits.shiftrUnbounded :: Integer -> Integer -> Integer)" and
(Haskell_Quickcheck) "(Data'_Bits.shiftrUnbounded :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
(Scala) "Integer'_Bit.shiftr"
lemma shiftr_integer_code [code]:
‹drop_bit n x = integer_shiftr x (integer_of_nat n)› for x :: integer
by (simp add: integer_shiftr_def)
end