Theory J1

(*  Title:      JinjaThreads/Compiler/J1.thy
    Author:     Andreas Lochbihler
*)

section ‹Semantics of the intermediate language›

theory J1 imports
  J1State
  J1Heap
  "../Framework/FWBisimulation"
begin

abbreviation final_expr1 :: "('addr expr1 × 'addr locals1) × ('addr expr1 × 'addr locals1) list  bool" where
  "final_expr1  λ(ex, exs). final (fst ex)  exs = []"

definition extNTA2J1 :: 
  "'addr J1_prog  (cname × mname × 'addr)  (('addr expr1 × 'addr locals1) × ('addr expr1 × 'addr locals1) list)"
where
  "extNTA2J1 P = (λ(C, M, a). let (D, _, _, meth) = method P C M; body = the meth
                              in (({0:Class D=None; body}, Addr a # replicate (max_vars body) undefined_value), []))"

lemma extNTA2J1_iff [simp]:
  "extNTA2J1 P (C, M, a) = (({0:Class (fst (method P C M))=None; the (snd (snd (snd (method P C M))))}, Addr a # replicate (max_vars (the (snd (snd (snd (method P C M)))))) undefined_value), [])"
by(simp add: extNTA2J1_def split_beta)

abbreviation extTA2J1 :: 
  "'addr J1_prog  ('addr, 'thread_id, 'heap) external_thread_action  ('addr, 'thread_id, 'heap) J1_thread_action"
where "extTA2J1 P  convert_extTA (extNTA2J1 P)"

abbreviation (input) extRet2J1 :: "'addr expr1  'addr extCallRet  'addr expr1"
where "extRet2J1  extRet2J"

lemma max_vars_extRet2J1 [simp]: 
  "max_vars e = 0  max_vars (extRet2J1 e va) = 0"
by(cases va) simp_all

context J1_heap_base begin

abbreviation J1_start_state :: "'addr J1_prog  cname  mname  'addr val list  ('addr, 'thread_id, 'heap) J1_state"
where
  "J1_start_state  
   start_state (λC M Ts T body vs. ((blocks1 0 (Class C # Ts) body, Null # vs @ replicate (max_vars body) undefined_value), []))"

inductive red1 :: 
  "bool  'addr J1_prog  'thread_id  'addr expr1  'heap × 'addr locals1 
   ('addr, 'thread_id, 'heap) external_thread_action  'addr expr1  'heap × 'addr locals1  bool"
  (‹_,_,_ ⊢1 ((1_,/_) -_/ (1_,/_)) [51,51,0,0,0,0,0,0] 81)
  and reds1 ::
  "bool  'addr J1_prog  'thread_id  'addr expr1 list  'heap × 'addr locals1
   ('addr, 'thread_id, 'heap) external_thread_action  'addr expr1 list  'heap × 'addr locals1  bool"
  (‹_,_,_ ⊢1 ((1_,/_) [-_→]/ (1_,/_)) [51,51,0,0,0,0,0,0] 81)
for uf :: bool and P :: "'addr J1_prog" and t :: 'thread_id
where
  Red1New:
  "(h', a)  allocate h (Class_type C)
   uf,P,t ⊢1 new C, (h, l) -NewHeapElem a (Class_type C) addr a, (h', l)"

| Red1NewFail:
  "allocate h (Class_type C) = {}
   uf,P,t ⊢1 new C, (h, l) -ε THROW OutOfMemory, (h, l)"

| New1ArrayRed:
  "uf,P,t ⊢1 e, s -ta e', s'
   uf,P,t ⊢1 newA Te, s -ta newA Te', s'"

| Red1NewArray:
  " 0 <=s i; (h', a)  allocate h (Array_type T (nat (sint i))) 
   uf,P,t ⊢1 newA TVal (Intg i), (h, l) -NewHeapElem a (Array_type T (nat (sint i))) addr a, (h', l)"

| Red1NewArrayNegative:
  "i <s 0  uf,P,t ⊢1 newA TVal (Intg i), s -ε THROW NegativeArraySize, s"

| Red1NewArrayFail:
  " 0 <=s i; allocate h (Array_type T (nat (sint i))) = {} 
   uf,P,t ⊢1 newA TVal (Intg i), (h, l) -ε THROW OutOfMemory, (h, l)"

| Cast1Red:
  "uf,P,t ⊢1 e, s -ta e', s'
   uf,P,t ⊢1 Cast C e, s -ta Cast C e', s'"

| Red1Cast:
 " typeof⇘hp sv = U; P  U  T 
   uf,P,t ⊢1 Cast T (Val v), s -ε Val v, s"

| Red1CastFail:
  " typeof⇘hp sv = U; ¬ P  U  T 
   uf,P,t ⊢1 Cast T (Val v), s -ε THROW ClassCast, s"

| InstanceOf1Red:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 e instanceof T, s -ta e' instanceof T, s'"

| Red1InstanceOf:
  " typeof⇘hp sv = U; b  v  Null  P  U  T 
    uf,P,t ⊢1 (Val v) instanceof T, s -ε Val (Bool b), s"

| Bin1OpRed1:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 e «bop» e2, s -ta e' «bop» e2, s'"

| Bin1OpRed2:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 (Val v) «bop» e, s -ta (Val v) «bop» e', s'"

| Red1BinOp:
  "binop bop v1 v2 = Some (Inl v) 
  uf,P,t ⊢1 (Val v1) «bop» (Val v2), s -ε Val v, s"

| Red1BinOpFail:
  "binop bop v1 v2 = Some (Inr a) 
  uf,P,t ⊢1 (Val v1) «bop» (Val v2), s -ε Throw a, s"

| Red1Var:
  " (lcl s)!V = v; V < size (lcl s) 
   uf,P,t ⊢1 Var V, s -ε Val v, s"

| LAss1Red:
  "uf,P,t ⊢1 e, s -ta e', s'
   uf,P,t ⊢1 V:=e, s -ta V:=e', s'"

| Red1LAss:
  "V < size l
   uf,P,t ⊢1 V:=(Val v), (h, l) -ε unit, (h, l[V := v])"

| AAcc1Red1:
  "uf,P,t ⊢1 a, s -ta a', s'  uf,P,t ⊢1 ai, s -ta a'i, s'"

| AAcc1Red2:
  "uf,P,t ⊢1 i, s -ta i', s'  uf,P,t ⊢1 (Val a)i, s -ta (Val a)i', s'"

| Red1AAccNull:
  "uf,P,t ⊢1 nullVal i, s -ε THROW NullPointer, s"

| Red1AAccBounds:
  " typeof_addr (hp s) a = Array_type T n; i <s 0  sint i  int n 
   uf,P,t ⊢1 (addr a)Val (Intg i), s -ε THROW ArrayIndexOutOfBounds, s"

| Red1AAcc:
  " typeof_addr h a = Array_type T n; 0 <=s i; sint i < int n;
     heap_read h a (ACell (nat (sint i))) v 
   uf,P,t ⊢1 (addr a)Val (Intg i), (h, xs) -ReadMem a (ACell (nat (sint i))) v Val v, (h, xs)"

| AAss1Red1:
  "uf,P,t ⊢1 a, s -ta a', s'  uf,P,t ⊢1 ai := e, s -ta a'i := e, s'"

| AAss1Red2:
  "uf,P,t ⊢1 i, s -ta i', s'  uf,P,t ⊢1 (Val a)i := e, s -ta (Val a)i' := e, s'"

| AAss1Red3:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 AAss (Val a) (Val i) e, s -ta (Val a)Val i := e', s'"

| Red1AAssNull:
  "uf,P,t ⊢1 AAss null (Val i) (Val e), s -ε THROW NullPointer, s"

| Red1AAssBounds:
  " typeof_addr (hp s) a = Array_type T n; i <s 0  sint i  int n 
   uf,P,t ⊢1 AAss (addr a) (Val (Intg i)) (Val e), s -ε THROW ArrayIndexOutOfBounds, s"

| Red1AAssStore:
  " typeof_addr (hp s) a = Array_type T n; 0 <=s i; sint i < int n;
     typeof⇘hp sw = U; ¬ (P  U  T) 
   uf,P,t ⊢1 AAss (addr a) (Val (Intg i)) (Val w), s -ε THROW ArrayStore, s"

| Red1AAss:
  " typeof_addr h a = Array_type T n; 0 <=s i; sint i < int n; typeof⇘hw = Some U; P  U  T;
     heap_write h a (ACell (nat (sint i))) w h' 
   uf,P,t ⊢1 AAss (addr a) (Val (Intg i)) (Val w), (h, l) -WriteMem a (ACell (nat (sint i))) w unit, (h', l)"

| ALength1Red:
  "uf,P,t ⊢1 a, s -ta a', s'  uf,P,t ⊢1 a∙length, s -ta a'∙length, s'"

| Red1ALength:
  "typeof_addr h a = Array_type T n 
   uf,P,t ⊢1 addr a∙length, (h, xs) -ε Val (Intg (word_of_nat n)), (h, xs)"

| Red1ALengthNull:
  "uf,P,t ⊢1 null∙length, s -ε THROW NullPointer, s"

| FAcc1Red:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 eF{D}, s -ta e'F{D}, s'"

| Red1FAcc:
  "heap_read h a (CField D F) v
   uf,P,t ⊢1 (addr a)F{D}, (h, xs) -ReadMem a (CField D F) v Val v, (h, xs)"

| Red1FAccNull:
  "uf,P,t ⊢1 nullF{D}, s -ε THROW NullPointer, s"

| FAss1Red1:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 eF{D}:=e2, s -ta e'F{D}:=e2, s'"

| FAss1Red2:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 FAss (Val v) F D e, s -ta Val vF{D}:=e', s'"

| Red1FAss:
  "heap_write h a (CField D F) v h' 
  uf,P,t ⊢1 FAss (addr a) F D (Val v), (h, l) -WriteMem a (CField D F) v unit, (h', l)"

| Red1FAssNull:
  "uf,P,t ⊢1 FAss null F D (Val v), s -ε THROW NullPointer, s"

| CAS1Red1:
  "uf,P,t ⊢1 e, s -ta e', s' 
  uf,P,t ⊢1 e∙compareAndSwap(DF, e2, e3), s -ta e'∙compareAndSwap(DF, e2, e3), s'"

| CAS1Red2:
  "uf,P,t ⊢1 e, s -ta e', s' 
  uf,P,t ⊢1 Val v∙compareAndSwap(DF, e, e3), s -ta Val v∙compareAndSwap(DF, e', e3), s'"

| CAS1Red3:
  "uf,P,t ⊢1 e, s -ta e', s' 
  uf,P,t ⊢1 Val v∙compareAndSwap(DF, Val v', e), s -ta Val v∙compareAndSwap(DF, Val v', e'), s'"

| CAS1Null:
  "uf,P,t ⊢1 null∙compareAndSwap(DF, Val v, Val v'), s -ε THROW NullPointer, s"

| Red1CASSucceed:
  " heap_read h a (CField D F) v; heap_write h a (CField D F) v' h'  
  uf,P,t ⊢1 addr a∙compareAndSwap(DF, Val v, Val v'), (h, l) 
  -ReadMem a (CField D F) v, WriteMem a (CField D F) v' 
  true, (h', l)"

| Red1CASFail:
  " heap_read h a (CField D F) v''; v  v''  
  uf,P,t ⊢1 addr a∙compareAndSwap(DF, Val v, Val v'), (h, l) 
  -ReadMem a (CField D F) v'' 
  false, (h, l)"

| Call1Obj:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 eM(es), s -ta e'M(es), s'"

| Call1Params:
  "uf,P,t ⊢1 es, s [-ta→] es',s' 
  uf,P,t ⊢1 (Val v)M(es),s -ta (Val v)M(es'),s'"

| Red1CallExternal:
  " typeof_addr (hp s) a = T; P  class_type_of T sees M:TsTr = Native in D; P,t  aM(vs), hp s -ta→ext va, h';
     e' = extRet2J1 ((addr a)M(map Val vs)) va; s' = (h', lcl s) 
   uf,P,t ⊢1 (addr a)M(map Val vs), s -ta e', s'"

| Red1CallNull:
  "uf,P,t ⊢1 nullM(map Val vs), s -ε THROW NullPointer, s"

| Block1Some:
  "V < length x  uf,P,t ⊢1 {V:T=v; e}, (h, x) -ε {V:T=None; e}, (h, x[V := v])"

| Block1Red:
  "uf,P,t ⊢1 e, (h, x) -ta e', (h', x')
   uf,P,t ⊢1 {V:T=None; e}, (h, x) -ta {V:T=None; e'}, (h', x')"

| Red1Block:
  "uf,P,t ⊢1 {V:T=None; Val u}, s -ε Val u, s"

| Synchronized1Red1:
  "uf,P,t ⊢1 o', s -ta o'', s'  uf,P,t ⊢1 sync⇘V(o') e, s -ta sync⇘V(o'') e, s'"

| Synchronized1Null:
  "V < length xs  uf,P,t ⊢1 sync⇘V(null) e, (h, xs) -ε THROW NullPointer, (h, xs[V := Null])"

| Lock1Synchronized:
  "V < length xs  uf,P,t ⊢1 sync⇘V(addr a) e, (h, xs) -Locka, SyncLock a insync⇘V(a) e, (h, xs[V := Addr a])"

| Synchronized1Red2:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 insync⇘V(a) e, s -ta insync⇘V(a) e', s'"

| Unlock1Synchronized:
  " xs ! V = Addr a'; V < length xs   uf,P,t ⊢1 insync⇘V(a) (Val v), (h, xs) -Unlocka', SyncUnlock a' Val v, (h, xs)"

| Unlock1SynchronizedNull:
  " xs ! V = Null; V < length xs   uf,P,t ⊢1 insync⇘V(a) (Val v), (h, xs) -ε THROW NullPointer, (h, xs)"

| Unlock1SynchronizedFail:
  " uf; xs ! V = Addr a'; V < length xs 
   uf,P,t ⊢1 insync⇘V(a) (Val v), (h, xs) -UnlockFaila' THROW IllegalMonitorState, (h, xs)"

| Seq1Red:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 e;;e2, s -ta e';;e2, s'"

| Red1Seq:
  "uf,P,t ⊢1 Seq (Val v) e, s -ε e, s"

| Cond1Red:
  "uf,P,t ⊢1 b, s -ta b', s'  uf,P,t ⊢1 if (b) e1 else e2, s -ta if (b') e1 else e2, s'"

| Red1CondT:
  "uf,P,t ⊢1 if (true) e1 else e2, s -ε e1, s"

| Red1CondF:
  "uf,P,t ⊢1 if (false) e1 else e2, s -ε e2, s"

| Red1While:
  "uf,P,t ⊢1 while(b) c, s -ε if (b) (c;;while(b) c) else unit, s"

| Throw1Red:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 throw e, s -ta throw e', s'"

| Red1ThrowNull:
  "uf,P,t ⊢1 throw null, s -ε THROW NullPointer, s"

| Try1Red:
  "uf,P,t ⊢1 e, s -ta e', s'  uf,P,t ⊢1 try e catch(C V) e2, s -ta try e' catch(C V) e2, s'"

| Red1Try:
  "uf,P,t ⊢1 try (Val v) catch(C V) e2, s -ε Val v, s"

| Red1TryCatch:
  " typeof_addr h a = Class_type D; P  D * C; V < length x 
   uf,P,t ⊢1 try (Throw a) catch(C V) e2, (h, x) -ε {V:Class C=None; e2}, (h, x[V := Addr a])"

| Red1TryFail:
  " typeof_addr (hp s) a = Class_type D; ¬ P  D * C 
   uf,P,t ⊢1 try (Throw a) catch(C V) e2, s -ε Throw a, s"

| List1Red1:
  "uf,P,t ⊢1 e,s -ta e',s' 
  uf,P,t ⊢1 e#es,s [-ta→] e'#es,s'"

| List1Red2:
  "uf,P,t ⊢1 es,s [-ta→] es',s' 
  uf,P,t ⊢1 Val v # es,s [-ta→] Val v # es',s'"

| New1ArrayThrow: "uf,P,t ⊢1 newA TThrow a, s -ε Throw a, s"
| Cast1Throw: "uf,P,t ⊢1 Cast C (Throw a), s -ε Throw a, s"
| InstanceOf1Throw: "uf,P,t ⊢1 (Throw a) instanceof T, s -ε Throw a, s"
| Bin1OpThrow1: "uf,P,t ⊢1 (Throw a) «bop» e2, s -ε Throw a, s"
| Bin1OpThrow2: "uf,P,t ⊢1 (Val v1) «bop» (Throw a), s -ε Throw a, s"
| LAss1Throw: "uf,P,t ⊢1 V:=(Throw a), s -ε Throw a, s"
| AAcc1Throw1: "uf,P,t ⊢1 (Throw a)i, s -ε Throw a, s"
| AAcc1Throw2: "uf,P,t ⊢1 (Val v)Throw a, s -ε Throw a, s"
| AAss1Throw1: "uf,P,t ⊢1 (Throw a)i := e, s -ε Throw a, s"
| AAss1Throw2: "uf,P,t ⊢1 (Val v)Throw a := e, s -ε Throw a, s"
| AAss1Throw3: "uf,P,t ⊢1 AAss (Val v) (Val i) (Throw a), s -ε Throw a, s"
| ALength1Throw: "uf,P,t ⊢1 (Throw a)∙length, s -ε Throw a, s"
| FAcc1Throw: "uf,P,t ⊢1 (Throw a)F{D}, s -ε Throw a, s"
| FAss1Throw1: "uf,P,t ⊢1 (Throw a)F{D}:=e2, s -ε Throw a, s"
| FAss1Throw2: "uf,P,t ⊢1 FAss (Val v) F D (Throw a), s -ε Throw a, s"
| CAS1Throw: "uf,P,t ⊢1 Throw a∙compareAndSwap(DF, e2, e3), s -ε Throw a, s"
| CAS1Throw2: "uf,P,t ⊢1 Val v∙compareAndSwap(DF, Throw a, e3), s -ε Throw a, s"
| CAS1Throw3: "uf,P,t ⊢1 Val v∙compareAndSwap(DF, Val v', Throw a), s -ε Throw a, s"
| Call1ThrowObj: "uf,P,t ⊢1 (Throw a)M(es), s -ε Throw a, s"
| Call1ThrowParams: " es = map Val vs @ Throw a # es'   uf,P,t ⊢1 (Val v)M(es), s -ε Throw a, s"
| Block1Throw: "uf,P,t ⊢1 {V:T=None; Throw a}, s -ε Throw a, s"
| Synchronized1Throw1: "uf,P,t ⊢1 sync⇘V(Throw a) e, s -ε Throw a, s"
| Synchronized1Throw2:
  " xs ! V = Addr a'; V < length xs 
   uf,P,t ⊢1 insync⇘V(a) Throw ad, (h, xs) -Unlocka', SyncUnlock a' Throw ad, (h, xs)"
| Synchronized1Throw2Fail:
  " uf; xs ! V = Addr a'; V < length xs 
   uf,P,t ⊢1 insync⇘V(a) Throw ad, (h, xs) -UnlockFaila' THROW IllegalMonitorState, (h, xs)"
| Synchronized1Throw2Null:
  " xs ! V = Null; V < length xs 
   uf,P,t ⊢1 insync⇘V(a) Throw ad, (h, xs) -ε THROW NullPointer, (h, xs)"
| Seq1Throw: "uf,P,t ⊢1 (Throw a);;e2, s -ε Throw a, s"
| Cond1Throw: "uf,P,t ⊢1 if (Throw a) e1 else e2, s -ε Throw a, s"
| Throw1Throw: "uf,P,t ⊢1 throw(Throw a), s -ε Throw a, s"

inductive_cases red1_cases:
  "uf,P,t ⊢1 new C, s -ta e', s'"
  "uf,P,t ⊢1 new Te, s -ta e', s'"
  "uf,P,t ⊢1 e «bop» e', s -ta e'', s'"
  "uf,P,t ⊢1 Var V, s -ta e', s'"
  "uf,P,t ⊢1 V:=e, s -ta e', s'"
  "uf,P,t ⊢1 ai, s -ta e', s'"
  "uf,P,t ⊢1 ai := e, s -ta e', s'"
  "uf,P,t ⊢1 a∙length, s -ta e', s'"
  "uf,P,t ⊢1 eF{D}, s -ta e', s'"
  "uf,P,t ⊢1 eF{D} := e2, s -ta e', s'"
  "uf,P,t ⊢1 e∙compareAndSwap(DF, e', e''), s -ta e''', s'"
  "uf,P,t ⊢1 eM(es), s -ta e', s'"
  "uf,P,t ⊢1 {V:T=vo; e}, s -ta e', s'"
  "uf,P,t ⊢1 sync⇘V(o') e, s -ta e', s'"
  "uf,P,t ⊢1 insync⇘V(a) e, s -ta e', s'"
  "uf,P,t ⊢1 e;;e', s -ta e'', s'"
  "uf,P,t ⊢1 throw e, s  -ta e', s'"
  "uf,P,t ⊢1 try e catch(C V) e'', s  -ta e', s'"

inductive Red1 ::
  "bool  'addr J1_prog  'thread_id  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1) list  'heap
   ('addr, 'thread_id, 'heap) J1_thread_action
   ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1) list  'heap  bool"
  (‹_,_,_ ⊢1 ((1_'/_,/_) -_/ (1_'/_,/_)) [51,51,0,0,0,0,0,0,0,0] 81)
for uf :: bool and P :: "'addr J1_prog" and t :: 'thread_id
where

  red1Red:
  "uf,P,t ⊢1 e, (h, x) -ta e', (h', x')
   uf,P,t ⊢1 (e, x)/exs, h -extTA2J1 P ta (e', x')/exs, h'"

| red1Call:
  " call1 e = (a, M, vs); typeof_addr h a = U; 
     P  class_type_of U sees M:TsT = body in D; 
     size vs = size Ts 
   uf,P,t ⊢1 (e, x)/exs, h -ε (blocks1 0 (Class D#Ts) body, Addr a # vs @ replicate (max_vars body) undefined_value)/(e, x)#exs, h"

| red1Return:
  "final e'  uf,P,t ⊢1 (e', x')/(e, x)#exs, h -ε (inline_call e' e, x)/exs, h"

abbreviation mred1g :: "bool  'addr J1_prog  ('addr,'thread_id,('addr expr1 × 'addr locals1) × ('addr expr1 × 'addr locals1) list,'heap,'addr,('addr, 'thread_id) obs_event) semantics"
where "mred1g uf P  λt ((ex, exs), h) ta ((ex', exs'), h'). uf,P,t ⊢1 ex/exs, h -ta ex'/exs', h'"

abbreviation mred1' :: 
  "'addr J1_prog  ('addr,'thread_id,('addr expr1 × 'addr locals1) × ('addr expr1 × 'addr locals1) list,'heap,'addr,('addr, 'thread_id) obs_event) semantics"
where "mred1'  mred1g False"

abbreviation mred1 :: 
  "'addr J1_prog  ('addr,'thread_id,('addr expr1 × 'addr locals1) × ('addr expr1 × 'addr locals1) list,'heap,'addr,('addr, 'thread_id) obs_event) semantics"
where "mred1  mred1g True"

lemma red1_preserves_len: "uf,P,t ⊢1 e, s -ta e', s'  length (lcl s') = length (lcl s)"
  and reds1_preserves_len: "uf,P,t ⊢1 es, s [-ta→] es', s'  length (lcl s') = length (lcl s)"
by(induct rule: red1_reds1.inducts)(auto)

lemma reds1_preserves_elen: "uf,P,t ⊢1 es, s [-ta→] es', s'  length es' = length es"
by(induct es arbitrary: es')(auto elim: reds1.cases)

lemma red1_Val_iff [iff]:
  "¬ uf,P,t ⊢1 Val v, s -ta e', s'"
by(auto elim: red1.cases)

lemma red1_Throw_iff [iff]:
  "¬ uf,P,t ⊢1 Throw a, xs -ta e', s'"
by(auto elim: red1.cases)

lemma reds1_Nil_iff [iff]:
  "¬ uf,P,t ⊢1 [], s [-ta→] es', s'"
by(auto elim: reds1.cases)

lemma reds1_Val_iff [iff]:
  "¬ uf,P,t ⊢1 map Val vs, s [-ta→] es', s'"
by(induct vs arbitrary: es')(auto elim: reds1.cases)

lemma reds1_map_Val_Throw_iff [iff]:
  "¬ uf,P,t ⊢1 map Val vs @ Throw a # es, s [-ta→] es', s'"
by(induct vs arbitrary: es')(auto elim: reds1.cases elim!: red1_cases)

lemma red1_max_vars_decr: "uf,P,t ⊢1 e, s -ta e', s'  max_vars e'  max_vars e" 
  and reds1_max_varss_decr: "uf,P,t ⊢1 es, s [-ta→] es', s'  max_varss es'  max_varss es"
by(induct rule: red1_reds1.inducts)(auto)

lemma red1_new_thread_heap: "uf,P,t ⊢1 e, s -ta e', s'; NewThread t' ex h  set tat   h = hp s'"
  and reds1_new_thread_heap: "uf,P,t ⊢1 es, s [-ta→] es', s'; NewThread t' ex h  set tat   h = hp s'"
apply(induct rule: red1_reds1.inducts)
apply(fastforce dest: red_ext_new_thread_heap simp add: ta_upd_simps)+
done

lemma red1_new_threadD:
  " uf,P,t ⊢1 e, s -ta e', s'; NewThread t' x H  set tat 
   a M vs va T Ts Tr D. P,t  aM(vs), hp s -ta→ext va, hp s'  typeof_addr (hp s) a = T  P  class_type_of T sees M:TsTr = Native in D"
  and reds1_new_threadD:
  " uf,P,t ⊢1 es, s [-ta→] es', s'; NewThread t' x H  set tat 
   a M vs va T Ts Tr D. P,t  aM(vs), hp s -ta→ext va, hp s'  typeof_addr (hp s) a = T  P  class_type_of T sees M:TsTr = Native in D"
by(induct rule: red1_reds1.inducts)(fastforce simp add: ta_upd_simps)+

lemma red1_call_synthesized: " uf,P,t ⊢1 e, s -ta e', s'; call1 e = aMvs   synthesized_call P (hp s) aMvs"
  and reds1_calls_synthesized: " uf,P,t ⊢1 es, s [-ta→] es', s'; calls1 es = aMvs   synthesized_call P (hp s) aMvs"
apply(induct rule: red1_reds1.inducts)
apply(auto split: if_split_asm simp add: is_vals_conv append_eq_map_conv synthesized_call_conv)
apply blast
done

lemma red1_preserves_B: " uf,P,t ⊢1 e, s -ta e', s';  e n   e' n"
  and reds1_preserves_Bs: " uf,P,t ⊢1 es, s [-ta→] es', s'; ℬs es n  ℬs es' n"
by(induct arbitrary: n and n rule: red1_reds1.inducts)(auto)

end

context J1_heap begin

lemma red1_hext_incr: "uf,P,t ⊢1 e, s -ta e', s'  hext (hp s) (hp s')"
  and reds1_hext_incr: "uf,P,t ⊢1 es, s [-ta→] es', s'  hext (hp s) (hp s')"
by(induct rule: red1_reds1.inducts)(auto intro: hext_heap_ops red_external_hext)

lemma Red1_hext_incr: "uf,P,t ⊢1 ex/exs,h -ta ex'/exs',h'  h  h'"
by(auto elim!: Red1.cases dest: red1_hext_incr)

end

subsection ‹Silent moves›

context J1_heap_base begin 

primrec τmove1 :: "'m prog  'heap  ('a, 'b, 'addr) exp  bool"
  and τmoves1 :: "'m prog  'heap  ('a, 'b, 'addr) exp list  bool"
where
  "τmove1 P h (new C)  False"
| "τmove1 P h (newA Te)  τmove1 P h e  (a. e = Throw a)"
| "τmove1 P h (Cast U e)  τmove1 P h e  final e"
| "τmove1 P h (e instanceof T)  τmove1 P h e  final e"
| "τmove1 P h (e «bop» e')  τmove1 P h e  (a. e = Throw a)  (v. e = Val v  (τmove1 P h e'  final e'))"
| "τmove1 P h (Val v)  False"
| "τmove1 P h (Var V)  True"
| "τmove1 P h (V := e)  τmove1 P h e  final e"
| "τmove1 P h (ai)  τmove1 P h a  (ad. a = Throw ad)  (v. a = Val v  (τmove1 P h i  (a. i = Throw a)))"
| "τmove1 P h (AAss a i e)  τmove1 P h a  (ad. a = Throw ad)  (v. a = Val v  (τmove1 P h i  (a. i = Throw a)  (v. i = Val v  (τmove1 P h e  (a. e = Throw a)))))"
| "τmove1 P h (a∙length)  τmove1 P h a  (ad. a = Throw ad)"
| "τmove1 P h (eF{D})  τmove1 P h e  (a. e = Throw a)"
| "τmove1 P h (FAss e F D e')  τmove1 P h e  (a. e = Throw a)  (v. e = Val v  (τmove1 P h e'  (a. e' = Throw a)))"
| "τmove1 P h (e∙compareAndSwap(DF, e', e''))  τmove1 P h e  (a. e = Throw a)  (v. e = Val v  
  (τmove1 P h e'  (a. e' = Throw a)  (v. e' = Val v  (τmove1 P h e''  (a. e'' = Throw a)))))"
| "τmove1 P h (eM(es))  τmove1 P h e  (a. e = Throw a)  (v. e = Val v  
   (τmoves1 P h es  (vs a es'. es = map Val vs @ Throw a # es')  
    (vs. es = map Val vs  (v = Null  (T C Ts Tr D. typeof⇘hv = T  class_type_of' T = C  P  C sees M:TsTr = Native in D  τexternal_defs D M)))))"
| "τmove1 P h ({V:T=vo; e})  vo  None  τmove1 P h e  final e"
| "τmove1 P h (sync⇘V'(e) e')  τmove1 P h e  (a. e = Throw a)"
| "τmove1 P h (insync⇘V'(ad) e)  τmove1 P h e"
| "τmove1 P h (e;;e')  τmove1 P h e  final e"
| "τmove1 P h (if (e) e' else e'')  τmove1 P h e  final e"
| "τmove1 P h (while (e) e') = True"
| "τmove1 P h (throw e)  τmove1 P h e  (a. e = Throw a)  e = null"
| "τmove1 P h (try e catch(C V) e')  τmove1 P h e  final e"

| "τmoves1 P h []  False"
| "τmoves1 P h (e # es)  τmove1 P h e  (v. e = Val v  τmoves1 P h es)"

fun τMove1 :: "'m prog  'heap  (('a, 'b, 'addr) exp × 'c) × (('a, 'b, 'addr) exp × 'd) list  bool"
where
  "τMove1 P h ((e, x), exs) = (τmove1 P h e  final e)"

definition τred1g :: "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1g uf P t h exs e'xs' = (uf,P,t ⊢1 fst exs, (h, snd exs) -ε fst e'xs', (h, snd e'xs')  τmove1 P h (fst exs))"

definition τreds1g :: 
  "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where
  "τreds1g uf P t h esxs es'xs' =
   (uf,P,t ⊢1 fst esxs, (h, snd esxs) [-ε→] fst es'xs', (h, snd es'xs')  τmoves1 P h (fst esxs))"

abbreviation τred1gt :: 
  "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1gt uf P t h  (τred1g uf P t h)^++"

abbreviation τreds1gt ::
  "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where "τreds1gt uf P t h  (τreds1g uf P t h)^++"

abbreviation τred1gr ::
  "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1gr uf P t h  (τred1g uf P t h)^**"

abbreviation τreds1gr ::
  "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where "τreds1gr uf P t h  (τreds1g uf P t h)^**"

definition τRed1g ::
  "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1g uf P t h exexs ex'exs' = (uf,P,t ⊢1 fst exexs/snd exexs, h -ε fst ex'exs'/snd ex'exs', h  τMove1 P h exexs)"

abbreviation τRed1gt ::
  "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list) 
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1gt uf P t h  (τRed1g uf P t h)^++"

abbreviation τRed1gr :: 
  "bool  'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list) 
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1gr uf P t h  (τRed1g uf P t h)^**"

abbreviation τred1 :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1  τred1g True"

abbreviation τreds1 :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where "τreds1  τreds1g True"

abbreviation τred1t :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1t  τred1gt True"

abbreviation τreds1t ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where "τreds1t  τreds1gt True"

abbreviation τred1r ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1r  τred1gr True"

abbreviation τreds1r ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where "τreds1r  τreds1gr True"

abbreviation τRed1 ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1  τRed1g True"

abbreviation τRed1t ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list) 
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1t  τRed1gt True"

abbreviation τRed1r :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list) 
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1r  τRed1gr True"

abbreviation τred1' :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1'  τred1g False"

abbreviation τreds1' :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where "τreds1'  τreds1g False"

abbreviation τred1't ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1't  τred1gt False"

abbreviation τreds1't :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where "τreds1't  τreds1gt False"

abbreviation τred1'r ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1)  ('addr expr1 × 'addr locals1)  bool"
where "τred1'r  τred1gr False"

abbreviation τreds1'r :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 list × 'addr locals1)  ('addr expr1 list × 'addr locals1)  bool"
where "τreds1'r  τreds1gr False"

abbreviation τRed1' ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list) 
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1'  τRed1g False"

abbreviation τRed1't ::
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list) 
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1't  τRed1gt False"

abbreviation τRed1'r :: 
  "'addr J1_prog  'thread_id  'heap  ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list) 
   ('addr expr1 × 'addr locals1) × (('addr expr1 × 'addr locals1) list)  bool"
where "τRed1'r  τRed1gr False"

abbreviation τMOVE1 :: 
  "'m prog  ((('addr expr1 × 'addr locals1) × ('addr expr1 × 'addr locals1) list) × 'heap, ('addr, 'thread_id, 'heap) J1_thread_action) trsys"
where "τMOVE1 P  λ(exexs, h) ta s. τMove1 P h exexs  ta = ε"

lemma τmove1_τmoves1_intros:
  fixes e :: "('a, 'b, 'addr) exp" and es :: "('a, 'b, 'addr) exp list"
  shows τmove1NewArray: "τmove1 P h e  τmove1 P h (newA Te)"
  and τmove1Cast: "τmove1 P h e  τmove1 P h (Cast U e)"
  and τmove1CastRed: "τmove1 P h (Cast U (Val v))"
  and τmove1InstanceOf: "τmove1 P h e  τmove1 P h (e instanceof U)"
  and τmove1InstanceOfRed: "τmove1 P h ((Val v) instanceof U)"
  and τmove1BinOp1: "τmove1 P h e  τmove1 P h (e«bop»e')"
  and τmove1BinOp2: "τmove1 P h e  τmove1 P h (Val v«bop»e)"
  and τmove1BinOp: "τmove1 P h (Val v«bop»Val v')"
  and τmove1Var: "τmove1 P h (Var V)"
  and τmove1LAss: "τmove1 P h e  τmove1 P h (V := e)"
  and τmove1LAssRed: "τmove1 P h (V := Val v)"
  and τmove1AAcc1: "τmove1 P h e  τmove1 P h (ee')"
  and τmove1AAcc2: "τmove1 P h e  τmove1 P h (Val ve)"
  and τmove1AAss1: "τmove1 P h e  τmove1 P h (AAss e e' e'')"
  and τmove1AAss2: "τmove1 P h e  τmove1 P h (AAss (Val v) e e')"
  and τmove1AAss3: "τmove1 P h e  τmove1 P h (AAss (Val v) (Val v') e)"
  and τmove1ALength: "τmove1 P h e  τmove1 P h (e∙length)"
  and τmove1FAcc: "τmove1 P h e  τmove1 P h (eF{D})"
  and τmove1FAss1: "τmove1 P h e  τmove1 P h (FAss e F D e')"
  and τmove1FAss2: "τmove1 P h e  τmove1 P h (FAss (Val v) F D e)"
  and τmove1CAS1: "τmove1 P h e  τmove1 P h (e∙compareAndSwap(DF, e', e''))"
  and τmove1CAS2: "τmove1 P h e  τmove1 P h (Val v∙compareAndSwap(DF, e, e''))"
  and τmove1CAS3: "τmove1 P h e  τmove1 P h (Val v∙compareAndSwap(DF, Val v', e))"
  and τmove1CallObj: "τmove1 P h obj  τmove1 P h (objM(ps))"
  and τmove1CallParams: "τmoves1 P h ps  τmove1 P h (Val vM(ps))"
  and τmove1Call: "(T C Ts Tr D.  typeof⇘hv = T; class_type_of' T = C; P  C sees M:TsTr = Native in D   τexternal_defs D M)  τmove1 P h (Val vM(map Val vs))"
  and τmove1BlockSome: "τmove1 P h {V:T=v; e}"
  and τmove1Block: "τmove1 P h e  τmove1 P h {V:T=None; e}"
  and τmove1BlockRed: "τmove1 P h {V:T=None; Val v}"
  and τmove1Sync: "τmove1 P h e  τmove1 P h (sync⇘V'(e) e')"
  and τmove1InSync: "τmove1 P h e  τmove1 P h (insync⇘V'(a) e)"
  and τmove1Seq: "τmove1 P h e  τmove1 P h (e;;e')"
  and τmove1SeqRed: "τmove1 P h (Val v;; e)"
  and τmove1Cond: "τmove1 P h e  τmove1 P h (if (e) e1 else e2)"
  and τmove1CondRed: "τmove1 P h (if (Val v) e1 else e2)"
  and τmove1WhileRed: "τmove1 P h (while (c) e)"
  and τmove1Throw: "τmove1 P h e  τmove1 P h (throw e)"
  and τmove1ThrowNull: "τmove1 P h (throw null)"
  and τmove1Try: "τmove1 P h e  τmove1 P h (try e catch(C V) e'')"
  and τmove1TryRed: "τmove1 P h (try Val v catch(C V) e)"
  and τmove1TryThrow: "τmove1 P h (try Throw a catch(C V) e)"
  and τmove1NewArrayThrow: "τmove1 P h (newA TThrow a)"
  and τmove1CastThrow: "τmove1 P h (Cast T (Throw a))"
  and τmove1InstanceOfThrow: "τmove1 P h ((Throw a) instanceof T)"
  and τmove1BinOpThrow1: "τmove1 P h (Throw a «bop» e2)"
  and τmove1BinOpThrow2: "τmove1 P h (Val v «bop» Throw a)"
  and τmove1LAssThrow: "τmove1 P h (V:=(Throw a))"
  and τmove1AAccThrow1: "τmove1 P h (Throw ae)"
  and τmove1AAccThrow2: "τmove1 P h (Val vThrow a)"
  and τmove1AAssThrow1: "τmove1 P h (AAss (Throw a) e e')"
  and τmove1AAssThrow2: "τmove1 P h (AAss (Val v) (Throw a) e')"
  and τmove1AAssThrow3: "τmove1 P h (AAss (Val v) (Val v') (Throw a))"
  and τmove1ALengthThrow: "τmove1 P h (Throw a∙length)"
  and τmove1FAccThrow: "τmove1 P h (Throw aF{D})"
  and τmove1FAssThrow1: "τmove1 P h (Throw aF{D} := e)"
  and τmove1FAssThrow2: "τmove1 P h (FAss (Val v) F D (Throw a))"
  and τmove1CASThrow1: "τmove1 P h (CompareAndSwap (Throw a) D F e e')"
  and τmove1CASThrow2: "τmove1 P h (CompareAndSwap (Val v) D F (Throw a) e')"
  and τmove1CASThrow3: "τmove1 P h (CompareAndSwap (Val v) D F (Val v') (Throw a))"
  and τmove1CallThrowObj: "τmove1 P h (Throw aM(es))"
  and τmove1CallThrowParams: "τmove1 P h (Val vM(map Val vs @ Throw a # es))"
  and τmove1BlockThrow: "τmove1 P h {V:T=None; Throw a}"
  and τmove1SyncThrow: "τmove1 P h (sync⇘V'(Throw a) e)"
  and τmove1SeqThrow: "τmove1 P h (Throw a;;e)"
  and τmove1CondThrow: "τmove1 P h (if (Throw a) e1 else e2)"
  and τmove1ThrowThrow: "τmove1 P h (throw (Throw a))"

  and τmoves1Hd: "τmove1 P h e  τmoves1 P h (e # es)"
  and τmoves1Tl: "τmoves1 P h es  τmoves1 P h (Val v # es)"
by fastforce+

lemma τmoves1_map_Val [dest!]:
  "τmoves1 P h (map Val es)  False"
by(induct es)(auto)

lemma τmoves1_map_Val_ThrowD [simp]: "τmoves1 P h (map Val vs @ Throw a # es) = False"
by(induct vs)(fastforce)+

lemma fixes e :: "('a, 'b, 'addr) exp" and es :: "('a, 'b, 'addr) exp list"
  shows τmove1_not_call1:
  "call1 e = (a, M, vs)  τmove1 P h e  (synthesized_call P h (a, M, vs)  τexternal' P h a M)"
  and τmoves1_not_calls1:
  "calls1 es = (a, M, vs)  τmoves1 P h es  (synthesized_call P h (a, M, vs)  τexternal' P h a M)"
apply(induct e and es rule: call1.induct calls1.induct)
apply(auto split: if_split_asm simp add: is_vals_conv)
apply(fastforce simp add: synthesized_call_def map_eq_append_conv τexternal'_def τexternal_def dest: sees_method_fun)+
done

lemma red1_τ_taD: " uf,P,t ⊢1 e, s -ta e', s'; τmove1 P (hp s) e   ta = ε"
  and reds1_τ_taD: " uf,P,t ⊢1 es, s [-ta→] es', s'; τmoves1 P (hp s) es   ta = ε"
apply(induct rule: red1_reds1.inducts)
apply(fastforce simp add: map_eq_append_conv τexternal'_def τexternal_def dest: τexternal'_red_external_TA_empty)+
done

lemma τmove1_heap_unchanged: " uf,P,t ⊢1 e, s -ta e', s'; τmove1 P (hp s) e   hp s' = hp s"
  and τmoves1_heap_unchanged: " uf,P,t ⊢1 es, s [-ta→] es', s'; τmoves1 P (hp s) es   hp s' = hp s"
apply(induct rule: red1_reds1.inducts)
apply(auto)
apply(fastforce simp add: map_eq_append_conv τexternal'_def τexternal_def dest: τexternal'_red_external_heap_unchanged)+
done

lemma τMove1_iff:
  "τMove1 P h exexs  (let ((e, _), _) = exexs in τmove1 P h e  final e)"
by(cases exexs)(auto)


lemma τred1_iff [iff]:
  "τred1g uf P t h (e, xs) (e', xs') = (uf,P,t ⊢1 e, (h, xs) -ε e', (h, xs')  τmove1 P h e)"
by(simp add: τred1g_def)

lemma τreds1_iff [iff]:
  "τreds1g uf P t h (es, xs) (es', xs') = (uf,P,t ⊢1 es, (h, xs) [-ε→] es', (h, xs')  τmoves1 P h es)"
by(simp add: τreds1g_def)

lemma τred1t_1step:
  " uf,P,t ⊢1 e, (h, xs) -ε e', (h, xs'); τmove1 P h e 
   τred1gt uf P t h (e, xs) (e', xs')"
by(blast intro: tranclp.r_into_trancl)

lemma τred1t_2step:
  " uf,P,t ⊢1 e, (h, xs) -ε e', (h, xs'); τmove1 P h e; 
     uf,P,t ⊢1 e', (h, xs') -ε e'', (h, xs''); τmove1 P h e' 
   τred1gt uf P t h (e, xs) (e'', xs'')"
by(blast intro: tranclp.trancl_into_trancl[OF τred1t_1step])

lemma τred1t_3step:
  " uf,P,t ⊢1 e, (h, xs) -ε e', (h, xs'); τmove1 P h e; 
     uf,P,t ⊢1 e', (h, xs') -ε e'', (h, xs''); τmove1 P h e';
     uf,P,t ⊢1 e'', (h, xs'') -ε e''', (h, xs'''); τmove1 P h e'' 
   τred1gt uf P t h (e, xs) (e''', xs''')"
by(blast intro: tranclp.trancl_into_trancl[OF τred1t_2step])

lemma τreds1t_1step:
  " uf,P,t ⊢1 es, (h, xs) [-ε→] es', (h, xs'); τmoves1 P h es 
   τreds1gt uf P t h (es, xs) (es', xs')"
by(blast intro: tranclp.r_into_trancl)

lemma τreds1t_2step:
  " uf,P,t ⊢1 es, (h, xs) [-ε→] es', (h, xs'); τmoves1 P h es; 
     uf,P,t ⊢1 es', (h, xs') [-ε→] es'', (h, xs''); τmoves1 P h es' 
   τreds1gt uf P t h (es, xs) (es'', xs'')"
by(blast intro: tranclp.trancl_into_trancl[OF τreds1t_1step])

lemma τreds1t_3step:
  " uf,P,t ⊢1 es, (h, xs) [-ε→] es', (h, xs'); τmoves1 P h es; 
     uf,P,t ⊢1 es', (h, xs') [-ε→] es'', (h, xs''); τmoves1 P h es';
     uf,P,t ⊢1 es'', (h, xs'') [-ε→] es''', (h, xs'''); τmoves1 P h es'' 
   τreds1gt uf P t h (es, xs) (es''', xs''')"
by(blast intro: tranclp.trancl_into_trancl[OF τreds1t_2step])

lemma τred1r_1step:
  " uf,P,t ⊢1 e, (h, xs) -ε e', (h, xs'); τmove1 P h e 
   τred1gr uf P t h (e, xs) (e', xs')"
by(blast intro: r_into_rtranclp)

lemma τred1r_2step:
  " uf,P,t ⊢1 e, (h, xs) -ε e', (h, xs'); τmove1 P h e; 
     uf,P,t ⊢1 e', (h, xs') -ε e'', (h, xs''); τmove1 P h e' 
   τred1gr uf P t h (e, xs) (e'', xs'')"
by(blast intro: rtranclp.rtrancl_into_rtrancl[OF τred1r_1step])

lemma τred1r_3step:
  " uf,P,t ⊢1 e, (h, xs) -ε e', (h, xs'); τmove1 P h e; 
     uf,P,t ⊢1 e', (h, xs') -ε e'', (h, xs''); τmove1 P h e';
     uf,P,t ⊢1 e'', (h, xs'') -ε e''', (h, xs'''); τmove1 P h e'' 
   τred1gr uf P t h (e, xs) (e''', xs''')"
by(blast intro: rtranclp.rtrancl_into_rtrancl[OF τred1r_2step])

lemma τreds1r_1step:
  " uf,P,t ⊢1 es, (h, xs) [-ε→] es', (h, xs'); τmoves1 P h es 
   τreds1gr uf P t h (es, xs) (es', xs')"
by(blast intro: r_into_rtranclp)

lemma τreds1r_2step:
  " uf,P,t ⊢1 es, (h, xs) [-ε→] es', (h, xs'); τmoves1 P h es; 
     uf,P,t ⊢1 es', (h, xs') [-ε→] es'', (h, xs''); τmoves1 P h es' 
   τreds1gr uf P t h (es, xs) (es'', xs'')"
by(blast intro: rtranclp.rtrancl_into_rtrancl[OF τreds1r_1step])

lemma τreds1r_3step:
  " uf,P,t ⊢1 es, (h, xs) [-ε→] es', (h, xs'); τmoves1 P h es; 
     uf,P,t ⊢1 es', (h, xs') [-ε→] es'', (h, xs''); τmoves1 P h es';
     uf,P,t ⊢1 es'', (h, xs'') [-ε→] es''', (h, xs'''); τmoves1 P h es'' 
   τreds1gr uf P t h (es, xs) (es''', xs''')"
by(blast intro: rtranclp.rtrancl_into_rtrancl[OF τreds1r_2step])

lemma τred1t_preserves_len: "τred1gt uf P t h (e, xs) (e', xs')  length xs' = length xs"
by(induct rule: tranclp_induct2)(auto dest: red1_preserves_len)

lemma τred1r_preserves_len: "τred1gr uf P t h (e, xs) (e', xs')  length xs' = length xs"
by(induct rule: rtranclp_induct2)(auto dest: red1_preserves_len)

lemma τred1t_inj_τreds1t: "τred1gt uf P t h (e, xs) (e', xs')  τreds1gt uf P t h (e # es, xs) (e' # es, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl List1Red1 τmoves1Hd)

lemma τreds1t_cons_τreds1t: "τreds1gt uf P t h (es, xs) (es', xs')  τreds1gt uf P t h (Val v # es, xs) (Val v # es', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl List1Red2 τmoves1Tl)

lemma τred1r_inj_τreds1r: "τred1gr uf P t h (e, xs) (e', xs')  τreds1gr uf P t h (e # es, xs) (e' # es, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl List1Red1 τmoves1Hd)

lemma τreds1r_cons_τreds1r: "τreds1gr uf P t h (es, xs) (es', xs')  τreds1gr uf P t h (Val v # es, xs) (Val v # es', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl List1Red2 τmoves1Tl)

lemma NewArray_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (newA Te, xs) (newA Te', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl New1ArrayRed τmove1NewArray)

lemma Cast_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (Cast T e, xs) (Cast T e', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Cast1Red τmove1Cast)

lemma InstanceOf_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (e instanceof T, xs) (e' instanceof T, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl InstanceOf1Red τmove1InstanceOf)

lemma BinOp_τred1t_xt1:
  "τred1gt uf P t h (e1, xs) (e1', xs')  τred1gt uf P t h (e1 «bop» e2, xs) (e1' «bop» e2, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Bin1OpRed1 τmove1BinOp1)

lemma BinOp_τred1t_xt2:
  "τred1gt uf P t h (e2, xs) (e2', xs')  τred1gt uf P t h (Val v «bop» e2, xs) (Val v «bop» e2', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Bin1OpRed2 τmove1BinOp2)

lemma LAss_τred1t:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (V := e, xs) (V := e', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl LAss1Red τmove1LAss)

lemma AAcc_τred1t_xt1:
  "τred1gt uf P t h (a, xs) (a', xs')  τred1gt uf P t h (ai, xs) (a'i, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl AAcc1Red1 τmove1AAcc1)

lemma AAcc_τred1t_xt2:
  "τred1gt uf P t h (i, xs) (i', xs')  τred1gt uf P t h (Val ai, xs) (Val ai', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl AAcc1Red2 τmove1AAcc2)

lemma AAss_τred1t_xt1:
  "τred1gt uf P t h (a, xs) (a', xs')  τred1gt uf P t h (ai := e, xs) (a'i := e, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl AAss1Red1 τmove1AAss1)

lemma AAss_τred1t_xt2:
  "τred1gt uf P t h (i, xs) (i', xs')  τred1gt uf P t h (Val ai := e, xs) (Val ai' := e, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl AAss1Red2 τmove1AAss2)

lemma AAss_τred1t_xt3:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (Val aVal i := e, xs) (Val aVal i := e', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl AAss1Red3 τmove1AAss3)

lemma ALength_τred1t_xt:
  "τred1gt uf P t h (a, xs) (a', xs')  τred1gt uf P t h (a∙length, xs) (a'∙length, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl ALength1Red τmove1ALength)

lemma FAcc_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (eF{D}, xs) (e'F{D}, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl FAcc1Red τmove1FAcc)

lemma FAss_τred1t_xt1:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (eF{D} := e2, xs) (e'F{D} := e2, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl FAss1Red1 τmove1FAss1)

lemma FAss_τred1t_xt2:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (Val vF{D} := e, xs) (Val vF{D} := e', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl FAss1Red2 τmove1FAss2)

lemma CAS_τred1t_xt1:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (e∙compareAndSwap(DF, e2, e3), xs) (e'∙compareAndSwap(DF, e2, e3), xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl CAS1Red1)

lemma CAS_τred1t_xt2:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (Val v∙compareAndSwap(DF, e, e3), xs) (Val v∙compareAndSwap(DF, e', e3), xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl CAS1Red2)

lemma CAS_τred1t_xt3:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (Val v∙compareAndSwap(DF, Val v', e), xs) (Val v∙compareAndSwap(DF, Val v', e'), xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl CAS1Red3)

lemma Call_τred1t_obj:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (eM(ps), xs) (e'M(ps), xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Call1Obj τmove1CallObj)

lemma Call_τred1t_param:
  "τreds1gt uf P t h (es, xs) (es', xs')  τred1gt uf P t h (Val vM(es), xs) (Val vM(es'), xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Call1Params τmove1CallParams)

lemma Block_None_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h ({V:T=None; e}, xs) ({V:T=None; e'}, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl τmove1Block elim!: Block1Red)

lemma Block_τred1t_Some:
  " τred1gt uf P t h (e, xs[V := v]) (e', xs'); V < length xs  
   τred1gt uf P t h ({V:Ty=v; e}, xs) ({V:Ty=None; e'}, xs')"
by(blast intro: tranclp_into_tranclp2 Block1Some τmove1BlockSome Block_None_τred1t_xt)

lemma Sync_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (sync⇘V(e) e2, xs) (sync⇘V(e') e2, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Synchronized1Red1 τmove1Sync)

lemma InSync_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (insync⇘V(a) e, xs) (insync⇘V(a) e', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Synchronized1Red2 τmove1InSync)

lemma Seq_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (e;;e2, xs) (e';;e2, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Seq1Red τmove1Seq)

lemma Cond_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (if (e) e1 else e2, xs) (if (e') e1 else e2, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Cond1Red τmove1Cond)

lemma Throw_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (throw e, xs) (throw e', xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Throw1Red τmove1Throw)

lemma Try_τred1t_xt:
  "τred1gt uf P t h (e, xs) (e', xs')  τred1gt uf P t h (try e catch(C V) e2, xs) (try e' catch(C V) e2, xs')"
by(induct rule: tranclp_induct2)(auto intro: tranclp.trancl_into_trancl Try1Red τmove1Try)


lemma NewArray_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (newA Te, xs) (newA Te', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl New1ArrayRed τmove1NewArray)

lemma Cast_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (Cast T e, xs) (Cast T e', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Cast1Red τmove1Cast)

lemma InstanceOf_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (e instanceof T, xs) (e' instanceof T, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl InstanceOf1Red τmove1InstanceOf)

lemma BinOp_τred1r_xt1:
  "τred1gr uf P t h (e1, xs) (e1', xs')  τred1gr uf P t h (e1 «bop» e2, xs) (e1' «bop» e2, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Bin1OpRed1 τmove1BinOp1)

lemma BinOp_τred1r_xt2:
  "τred1gr uf P t h (e2, xs) (e2', xs')  τred1gr uf P t h (Val v «bop» e2, xs) (Val v «bop» e2', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Bin1OpRed2 τmove1BinOp2)

lemma LAss_τred1r:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (V := e, xs) (V := e', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl LAss1Red τmove1LAss)

lemma AAcc_τred1r_xt1:
  "τred1gr uf P t h (a, xs) (a', xs')  τred1gr uf P t h (ai, xs) (a'i, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl AAcc1Red1 τmove1AAcc1)

lemma AAcc_τred1r_xt2:
  "τred1gr uf P t h (i, xs) (i', xs')  τred1gr uf P t h (Val ai, xs) (Val ai', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl AAcc1Red2 τmove1AAcc2)

lemma AAss_τred1r_xt1:
  "τred1gr uf P t h (a, xs) (a', xs')  τred1gr uf P t h (ai := e, xs) (a'i := e, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl AAss1Red1 τmove1AAss1)

lemma AAss_τred1r_xt2:
  "τred1gr uf P t h (i, xs) (i', xs')  τred1gr uf P t h (Val ai := e, xs) (Val ai' := e, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl AAss1Red2 τmove1AAss2)

lemma AAss_τred1r_xt3:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (Val aVal i := e, xs) (Val aVal i := e', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl AAss1Red3 τmove1AAss3)

lemma ALength_τred1r_xt:
  "τred1gr uf P t h (a, xs) (a', xs')  τred1gr uf P t h (a∙length, xs) (a'∙length, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl ALength1Red τmove1ALength)

lemma FAcc_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (eF{D}, xs) (e'F{D}, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl FAcc1Red τmove1FAcc)

lemma FAss_τred1r_xt1:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (eF{D} := e2, xs) (e'F{D} := e2, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl FAss1Red1 τmove1FAss1)

lemma FAss_τred1r_xt2:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (Val vF{D} := e, xs) (Val vF{D} := e', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl FAss1Red2 τmove1FAss2)

lemma CAS_τred1r_xt1:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (e∙compareAndSwap(DF, e2, e3), xs) (e'∙compareAndSwap(DF, e2, e3), xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl CAS1Red1)

lemma CAS_τred1r_xt2:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (Val v∙compareAndSwap(DF, e, e3), xs) (Val v∙compareAndSwap(DF, e', e3), xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl CAS1Red2)

lemma CAS_τred1r_xt3:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (Val v∙compareAndSwap(DF, Val v', e), xs) (Val v∙compareAndSwap(DF, Val v', e'), xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl CAS1Red3)

lemma Call_τred1r_obj:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (eM(ps), xs) (e'M(ps), xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Call1Obj τmove1CallObj)

lemma Call_τred1r_param:
  "τreds1gr uf P t h (es, xs) (es', xs')  τred1gr uf P t h (Val vM(es), xs) (Val vM(es'), xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Call1Params τmove1CallParams)

lemma Block_None_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h ({V:T=None; e}, xs) ({V:T=None; e'}, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl τmove1Block elim!: Block1Red)

lemma Block_τred1r_Some:
  " τred1gr uf P t h (e, xs[V := v]) (e', xs'); V < length xs  
   τred1gr uf P t h ({V:Ty=v; e}, xs) ({V:Ty=None; e'}, xs')"
by(blast intro: converse_rtranclp_into_rtranclp Block1Some τmove1BlockSome Block_None_τred1r_xt)

lemma Sync_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (sync⇘V(e) e2, xs) (sync⇘V(e') e2, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Synchronized1Red1 τmove1Sync)

lemma InSync_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (insync⇘V(a) e, xs) (insync⇘V(a) e', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Synchronized1Red2 τmove1InSync)

lemma Seq_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (e;;e2, xs) (e';;e2, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Seq1Red τmove1Seq)

lemma Cond_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (if (e) e1 else e2, xs) (if (e') e1 else e2, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Cond1Red τmove1Cond)

lemma Throw_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (throw e, xs) (throw e', xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Throw1Red τmove1Throw)

lemma Try_τred1r_xt:
  "τred1gr uf P t h (e, xs) (e', xs')  τred1gr uf P t h (try e catch(C V) e2, xs) (try e' catch(C V) e2, xs')"
by(induct rule: rtranclp_induct2)(auto intro: rtranclp.rtrancl_into_rtrancl Try1Red τmove1Try)

lemma τred1t_ThrowD [dest]: "τred1gt uf P t h (Throw a, xs) (e'', xs'')  e'' = Throw a  xs'' = xs"
by(induct rule: tranclp_induct2)(auto)

lemma τred1r_ThrowD [dest]: "τred1gr uf P t h (Throw a, xs) (e'', xs'')  e'' = Throw a  xs'' = xs"
by(induct rule: rtranclp_induct2)(auto)

lemma τRed1_conv [iff]:
  "τRed1g uf P t h (ex, exs) (ex', exs') = (uf,P,t ⊢1 ex/exs, h -ε ex'/exs', h  τMove1 P h (ex, exs))"
by(simp add: τRed1g_def)


lemma τred1t_into_τRed1t:
  "τred1gt uf P t h (e, xs) (e'', xs'')  τRed1gt uf P t h ((e, xs), exs) ((e'', xs''), exs)"
by(induct rule: tranclp_induct2)(fastforce dest: red1Red intro: τmove1Block tranclp.intros)+

lemma τred1r_into_τRed1r:
  "τred1gr uf P t h (e, xs) (e'', xs'')  τRed1gr uf P t h ((e, xs), exs) ((e'', xs''), exs)"
by(induct rule: rtranclp_induct2)(fastforce dest: red1Red intro: τmove1Block rtranclp.intros)+

lemma red1_max_vars: "uf,P,t ⊢1 e, s -ta e', s'  max_vars e'  max_vars e"
  and reds1_max_varss: "uf,P,t ⊢1 es, s [-ta→] es', s'  max_varss es'  max_varss es"
by(induct rule: red1_reds1.inducts) auto

lemma τred1t_max_vars: "τred1gt uf P t h (e, xs) (e', xs')  max_vars e'  max_vars e"
by(induct rule: tranclp_induct2)(auto dest: red1_max_vars)

lemma τred1r_max_vars: "τred1gr uf P t h (e, xs) (e', xs')  max_vars e'  max_vars e"
by(induct rule: rtranclp_induct2)(auto dest: red1_max_vars)

lemma τred1r_Val:
  "τred1gr uf P t h (Val v, xs) s'  s' = (Val v, xs)"
proof
  assume "τred1gr uf P t h (Val v, xs) s'"
  thus "s' = (Val v, xs)" by induct(auto)
qed auto

lemma τred1t_Val:
  "τred1gt uf P t h (Val v, xs) s'  False"
proof
  assume "τred1gt uf P t h (Val v, xs) s'"
  thus False by induct auto
qed auto

lemma τreds1r_map_Val:
  "τreds1gr uf P t h (map Val vs, xs) s'  s' = (map Val vs, xs)"
proof
  assume "τreds1gr uf P t h (map Val vs, xs) s'"
  thus "s' = (map Val vs, xs)" by induct auto
qed auto

lemma τreds1t_map_Val:
  "τreds1gt uf P t h (map Val vs, xs) s'  False"
proof
  assume "τreds1gt uf P t h (map Val vs, xs) s'"
  thus "False" by induct auto
qed auto

lemma τreds1r_map_Val_Throw:
  "τreds1gr uf P t h (map Val vs @ Throw a # es, xs) s'  s' = (map Val vs @ Throw a # es, xs)"
  (is "?lhs  ?rhs")
proof
  assume ?lhs thus ?rhs by induct auto
qed auto

lemma τreds1t_map_Val_Throw:
  "τreds1gt uf P t h (map Val vs @ Throw a # es, xs) s'  False"
  (is "?lhs  ?rhs")
proof
  assume ?lhs thus ?rhs by induct auto
qed auto

lemma τred1r_Throw:
  "τred1gr uf P t h (Throw a, xs) s'  s' = (Throw a, xs)" (is "?lhs  ?rhs")
proof
  assume ?lhs thus ?rhs by induct auto
qed simp

lemma τred1t_Throw:
  "τred1gt uf P t h (Throw a, xs) s'  False" (is "?lhs  ?rhs")
proof
  assume ?lhs thus ?rhs by induct auto
qed simp

lemma red1_False_into_red1_True:
  "False,P,t ⊢1 e, s -ta e', s'  True,P,t ⊢1 e, s -ta e', s'"
  and reds1_False_into_reds1_True:
  "False,P,t ⊢1 es, s [-ta→] es', s'  True,P,t ⊢1 es, s [-ta→] es', s'"
  by (induct rule: red1_reds1.inducts) (auto intro: red1_reds1.intros)

lemma Red1_False_into_Red1_True:
  assumes "False,P,t ⊢1 ex/exs,shr s -ta ex'/exs',m'"
  shows "True,P,t ⊢1 ex/exs,shr s -ta ex'/exs',m'"
using assms
by(cases)(auto dest: Red1.intros red1_False_into_red1_True)

lemma red1_Suspend_is_call:
  " uf,P,t ⊢1 e, s -ta e', s'; Suspend w  set taw   call1 e'  None"
  and reds_Suspend_is_calls:
  " uf,P,t ⊢1 es, s [-ta→] es', s'; Suspend w  set taw   calls1 es'  None"
by(induct rule: red1_reds1.inducts)(auto dest: red_external_Suspend_StaySame)

lemma Red1_Suspend_is_call:
  " uf,P,t ⊢1 (e, xs)/exs, h -ta (e', xs')/exs', h'; Suspend w  set taw   call1 e'  None"
by(auto elim!: Red1.cases dest: red1_Suspend_is_call)

lemma Red1_mthr: "multithreaded final_expr1 (mred1g uf P)"
by(unfold_locales)(fastforce elim!: Red1.cases dest: red1_new_thread_heap)+

lemma red1_τmove1_heap_unchanged: " uf,P,t ⊢1 e, s -ta e', s'; τmove1 P (hp s) e   hp s' = hp s"
  and red1_τmoves1_heap_unchanged: " uf,P,t ⊢1 es, s [-ta→] es', s'; τmoves1 P (hp s) es   hp s' = hp s"
apply(induct rule: red1_reds1.inducts)
apply(fastforce simp add: map_eq_append_conv τexternal'_def τexternal_def dest: τexternal'_red_external_heap_unchanged)+
done

lemma Red1_τmthr_wf: "τmultithreaded_wf final_expr1 (mred1g uf P) (τMOVE1 P)"
proof -
  interpret multithreaded final_expr1 "mred1g uf P" convert_RA
    by(rule Red1_mthr)
  show ?thesis
  proof
    fix x1 m1 t ta1 x1' m1'
    assume "mred1g uf P t (x1, m1) ta1 (x1', m1')" "τMOVE1 P (x1, m1) ta1 (x1', m1')"
    thus "m1 = m1'" by(cases x1)(fastforce elim!: Red1.cases dest: red1_τmove1_heap_unchanged)
  next
    fix s ta s'
    assume "τMOVE1 P s ta s'"
    thus "ta = ε" by(simp add: split_beta)
  qed
qed

end

sublocale J1_heap_base < Red1_mthr: 
  τmultithreaded_wf 
    final_expr1
    "mred1g uf P"
    convert_RA
    "τMOVE1 P"
  for uf P
by(rule Red1_τmthr_wf)

context J1_heap_base begin

lemma τRed1't_into_Red1'_τmthr_silent_movet:
  "τRed1gt uf P t h (ex2, exs2) (ex2'', exs2'')
   Red1_mthr.silent_movet uf P t ((ex2, exs2), h) ((ex2'', exs2''), h)"
apply(induct rule: tranclp_induct2)
 apply clarsimp
 apply(rule tranclp.r_into_trancl)
 apply(simp add: Red1_mthr.silent_move_iff)
apply(erule tranclp.trancl_into_trancl)
apply(simp add: Red1_mthr.silent_move_iff)
done

lemma τRed1t_into_Red1'_τmthr_silent_moves:
  "τRed1gt uf P t h (ex2, exs2) (ex2'', exs2'')
   Red1_mthr.silent_moves uf P t ((ex2, exs2), h) ((ex2'', exs2''), h)"
by(rule tranclp_into_rtranclp)(rule τRed1't_into_Red1'_τmthr_silent_movet)

lemma τRed1'r_into_Red1'_τmthr_silent_moves:
  "τRed1gr uf P t h (ex, exs) (ex', exs')  Red1_mthr.silent_moves uf P t ((ex, exs), h) ((ex', exs'), h)"
apply(induct rule: rtranclp_induct2)
 apply blast
apply(erule rtranclp.rtrancl_into_rtrancl)
apply(simp add: Red1_mthr.silent_move_iff)
done

lemma τRed1r_rtranclpD:
  "τRed1gr uf P t h s s'  τtrsys.silent_moves (mred1g uf P t) (τMOVE1 P) (s, h) (s', h)"
apply(induct rule: rtranclp_induct)
apply(auto elim!: rtranclp.rtrancl_into_rtrancl intro: τtrsys.silent_move.intros)
done

lemma τRed1t_tranclpD:
  "τRed1gt uf P t h s s'  τtrsys.silent_movet (mred1g uf P t) (τMOVE1 P) (s, h) (s', h)"
apply(induct rule: tranclp_induct)
apply(rule tranclp.r_into_trancl)
apply(auto elim!: tranclp.trancl_into_trancl intro!: τtrsys.silent_move.intros simp: τRed1g_def split_def)
done

lemma τmreds1_Val_Nil: "τtrsys.silent_moves (mred1g uf P t) (τMOVE1 P) (((Val v, xs), []), h) s  s = (((Val v, xs), []), h)"
proof
  assume "τtrsys.silent_moves (mred1g uf P t) (τMOVE1 P) (((Val v, xs), []), h) s"
  thus "s = (((Val v, xs), []), h)"
    by induct(auto elim!: Red1_mthr.silent_move.cases Red1.cases)
qed auto

lemma τmreds1_Throw_Nil:
  "τtrsys.silent_moves (mred1g uf P t) (τMOVE1 P) (((Throw a, xs), []), h) s  s = (((Throw a, xs), []), h)"
proof
  assume "τtrsys.silent_moves (mred1g uf P t) (τMOVE1 P) (((Throw a, xs), []), h) s"
  thus "s = (((Throw a, xs), []), h)"
    by induct(auto elim!: Red1_mthr.silent_move.cases Red1.cases)
qed auto

end

end