Theory Hidden
theory Hidden
imports "List-Index.List_Index"
begin
definition hidden :: "'a list ⇒ nat ⇒ bool" where
"hidden xs i ≡ i < size xs ∧ xs!i ∈ set(drop (i+1) xs)"
lemma hidden_last_index: "x ∈ set xs ⟹ hidden (xs @ [x]) (last_index xs x)"
by(auto simp add: hidden_def nth_append rev_nth[symmetric]
dest: last_index_less[OF _ le_refl])
lemma hidden_inacc: "hidden xs i ⟹ last_index xs x ≠ i"
by(auto simp add: hidden_def last_index_drop last_index_less_size_conv)
lemma [simp]: "hidden xs i ⟹ hidden (xs@[x]) i"
by(auto simp add:hidden_def nth_append)
lemma fun_upds_apply:
"(m(xs[↦]ys)) x =
(let xs' = take (size ys) xs
in if x ∈ set xs' then Some(ys ! last_index xs' x) else m x)"
proof(induct xs arbitrary: m ys)
case Nil then show ?case by(simp add: Let_def)
next
case Cons show ?case
proof(cases ys)
case Nil
then show ?thesis by(simp add:Let_def)
next
case Cons': Cons
then show ?thesis using Cons by(simp add: Let_def last_index_Cons)
qed
qed
lemma map_upds_apply_eq_Some:
"((m(xs[↦]ys)) x = Some y) =
(let xs' = take (size ys) xs
in if x ∈ set xs' then ys ! last_index xs' x = y else m x = Some y)"
by(simp add:fun_upds_apply Let_def)
lemma map_upds_upd_conv_last_index:
"⟦x ∈ set xs; size xs ≤ size ys ⟧
⟹ m(xs[↦]ys, x↦y) = m(xs[↦]ys[last_index xs x := y])"
by(rule ext) (simp add:fun_upds_apply eq_sym_conv Let_def)
end