Theory JVMExec
section ‹Program Execution in the JVM›
theory JVMExec
imports JVMExecInstr JVMExceptions
begin
abbreviation
instrs_of :: "jvm_prog ⇒ cname ⇒ mname ⇒ instr list" where
"instrs_of P C M == fst(snd(snd(snd(snd(snd(method P C M))))))"
fun exec :: "jvm_prog × jvm_state => jvm_state option" where
"exec (P, xp, h, []) = None"
| "exec (P, None, h, (stk,loc,C,M,pc)#frs) =
(let
i = instrs_of P C M ! pc;
(xcpt', h', frs') = exec_instr i P h stk loc C M pc frs
in Some(case xcpt' of
None ⇒ (None,h',frs')
| Some a ⇒ find_handler P a h ((stk,loc,C,M,pc)#frs)))"
| "exec (P, Some xa, h, frs) = None"
inductive_set
exec_1 :: "jvm_prog ⇒ (jvm_state × jvm_state) set"
and exec_1' :: "jvm_prog ⇒ jvm_state ⇒ jvm_state ⇒ bool"
(‹_ ⊢/ _ -jvm→⇩1/ _› [61,61,61] 60)
for P :: jvm_prog
where
"P ⊢ σ -jvm→⇩1 σ' ≡ (σ,σ') ∈ exec_1 P"
| exec_1I: "exec (P,σ) = Some σ' ⟹ P ⊢ σ -jvm→⇩1 σ'"
definition exec_all :: "jvm_prog ⇒ jvm_state ⇒ jvm_state ⇒ bool"
(‹(_ ⊢/ _ -jvm→/ _)› [61,61,61]60) where
exec_all_def1: "P ⊢ σ -jvm→ σ' ⟷ (σ,σ') ∈ (exec_1 P)⇧*"
notation (ASCII)
exec_all (‹_ |-/ _ -jvm->/ _› [61,61,61]60)
lemma exec_1_eq:
"exec_1 P = {(σ,σ'). exec (P,σ) = Some σ'}"
by (auto intro: exec_1I elim: exec_1.cases)
lemma exec_1_iff:
"P ⊢ σ -jvm→⇩1 σ' = (exec (P,σ) = Some σ')"
by (simp add: exec_1_eq)
lemma exec_all_def:
"P ⊢ σ -jvm→ σ' = ((σ,σ') ∈ {(σ,σ'). exec (P,σ) = Some σ'}⇧*)"
by (simp add: exec_all_def1 exec_1_eq)
lemma jvm_refl[iff]: "P ⊢ σ -jvm→ σ"
by(simp add: exec_all_def)
lemma jvm_trans[trans]:
"⟦ P ⊢ σ -jvm→ σ'; P ⊢ σ' -jvm→ σ'' ⟧ ⟹ P ⊢ σ -jvm→ σ''"
by(simp add: exec_all_def)
lemma jvm_one_step1[trans]:
"⟦ P ⊢ σ -jvm→⇩1 σ'; P ⊢ σ' -jvm→ σ'' ⟧ ⟹ P ⊢ σ -jvm→ σ''"
by (simp add: exec_all_def1)
lemma jvm_one_step2[trans]:
"⟦ P ⊢ σ -jvm→ σ'; P ⊢ σ' -jvm→⇩1 σ'' ⟧ ⟹ P ⊢ σ -jvm→ σ''"
by (simp add: exec_all_def1)
lemma exec_all_conf:
"⟦ P ⊢ σ -jvm→ σ'; P ⊢ σ -jvm→ σ'' ⟧
⟹ P ⊢ σ' -jvm→ σ'' ∨ P ⊢ σ'' -jvm→ σ'"
by(simp add: exec_all_def single_valued_def single_valued_confluent)
lemma exec_all_finalD: "P ⊢ (x, h, []) -jvm→ σ ⟹ σ = (x, h, [])"
proof -
assume "P ⊢ (x, h, []) -jvm→ σ"
then have "((x, h, []), σ) ∈ {(σ, σ'). exec (P, σ) = ⌊σ'⌋}⇧*"
by(simp only: exec_all_def)
then show ?thesis proof(rule converse_rtranclE) qed simp+
qed
lemma exec_all_deterministic:
"⟦ P ⊢ σ -jvm→ (x,h,[]); P ⊢ σ -jvm→ σ' ⟧ ⟹ P ⊢ σ' -jvm→ (x,h,[])"
proof -
assume assms: "P ⊢ σ -jvm→ (x,h,[])" "P ⊢ σ -jvm→ σ'"
show ?thesis using exec_all_conf[OF assms]
by(blast dest!: exec_all_finalD)
qed
text ‹
The start configuration of the JVM: in the start heap, we call a
method ‹m› of class ‹C› in program ‹P›. The
‹this› pointer of the frame is set to ‹Null› to simulate
a static method invokation.
›
definition start_state :: "jvm_prog ⇒ cname ⇒ mname ⇒ jvm_state" where
"start_state P C M =
(let (D,Ts,T,mxs,mxl⇩0,b) = method P C M in
(None, start_heap P, [([], Null # replicate mxl⇩0 undefined, C, M, 0)]))"
end