Theory BigStep

(*  Title:      Jinja/J/BigStep.thy

    Author:     Tobias Nipkow
    Copyright   2003 Technische Universitaet Muenchen
*)

section ‹Big Step Semantics›

theory BigStep imports Expr State begin

inductive
  eval :: "J_prog  expr  state  expr  state  bool"
          (‹_  ((1_,/_) / (1_,/_)) [51,0,0,0,0] 81)
  and evals :: "J_prog  expr list  state  expr list  state  bool"
           (‹_  ((1_,/_) [⇒]/ (1_,/_)) [51,0,0,0,0] 81)
  for P :: J_prog
where

  New:
  " new_Addr h = Some a; P  C has_fields FDTs; h' = h(a(C,init_fields FDTs)) 
   P  new C,(h,l)  addr a,(h',l)"

| NewFail:
  "new_Addr h = None 
  P  new C, (h,l)  THROW OutOfMemory,(h,l)"

| Cast:
  " P  e,s0  addr a,(h,l); h a = Some(D,fs); P  D * C 
   P  Cast C e,s0  addr a,(h,l)"

| CastNull:
  "P  e,s0  null,s1 
  P  Cast C e,s0  null,s1"

| CastFail:
  " P  e,s0 addr a,(h,l); h a = Some(D,fs); ¬ P  D * C 
   P  Cast C e,s0  THROW ClassCast,(h,l)"

| CastThrow:
  "P  e,s0  throw e',s1 
  P  Cast C e,s0  throw e',s1"

| Val:
  "P  Val v,s  Val v,s"

| BinOp:
  " P  e1,s0  Val v1,s1; P  e2,s1  Val v2,s2; binop(bop,v1,v2) = Some v 
   P  e1 «bop» e2,s0Val v,s2"

| BinOpThrow1:
  "P  e1,s0  throw e,s1 
  P  e1 «bop» e2, s0  throw e,s1"

| BinOpThrow2:
  " P  e1,s0  Val v1,s1; P  e2,s1  throw e,s2 
   P  e1 «bop» e2,s0  throw e,s2"

| Var:
  "l V = Some v 
  P  Var V,(h,l)  Val v,(h,l)"

| LAss:
  " P  e,s0  Val v,(h,l); l' = l(Vv) 
   P  V:=e,s0  unit,(h,l')"

| LAssThrow:
  "P  e,s0  throw e',s1 
  P  V:=e,s0  throw e',s1"

| FAcc:
  " P  e,s0  addr a,(h,l); h a = Some(C,fs); fs(F,D) = Some v 
   P  eF{D},s0  Val v,(h,l)"

| FAccNull:
  "P  e,s0  null,s1 
  P  eF{D},s0  THROW NullPointer,s1"

| FAccThrow:
  "P  e,s0  throw e',s1 
  P  eF{D},s0  throw e',s1"

| FAss:
  " P  e1,s0  addr a,s1; P  e2,s1  Val v,(h2,l2);
     h2 a = Some(C,fs); fs' = fs((F,D)v); h2' = h2(a(C,fs')) 
   P  e1F{D}:=e2,s0  unit,(h2',l2)"

| FAssNull:
  " P  e1,s0  null,s1;  P  e2,s1  Val v,s2  
  P  e1F{D}:=e2,s0  THROW NullPointer,s2"

| FAssThrow1:
  "P  e1,s0  throw e',s1 
  P  e1F{D}:=e2,s0  throw e',s1"

| FAssThrow2:
  " P  e1,s0  Val v,s1; P  e2,s1  throw e',s2 
   P  e1F{D}:=e2,s0  throw e',s2"

| CallObjThrow:
  "P  e,s0  throw e',s1 
  P  eM(ps),s0  throw e',s1"

| CallParamsThrow:
  " P  e,s0  Val v,s1; P  es,s1 [⇒] map Val vs @ throw ex # es',s2 
    P  eM(es),s0  throw ex,s2"

| CallNull:
  " P  e,s0  null,s1;  P  ps,s1 [⇒] map Val vs,s2 
   P  eM(ps),s0  THROW NullPointer,s2"

| Call:
  " P  e,s0  addr a,s1;  P  ps,s1 [⇒] map Val vs,(h2,l2);
     h2 a = Some(C,fs);  P  C sees M:TsT = (pns,body) in D;
     length vs = length pns;  l2' = [thisAddr a, pns[↦]vs];
     P  body,(h2,l2')  e',(h3,l3) 
   P  eM(ps),s0  e',(h3,l2)"

| Block:
  "P  e0,(h0,l0(V:=None))  e1,(h1,l1) 
  P  {V:T; e0},(h0,l0)  e1,(h1,l1(V:=l0 V))"

| Seq:
  " P  e0,s0  Val v,s1; P  e1,s1  e2,s2 
   P  e0;;e1,s0  e2,s2"

| SeqThrow:
  "P  e0,s0  throw e,s1 
  P  e0;;e1,s0throw e,s1"

| CondT:
  " P  e,s0  true,s1; P  e1,s1  e',s2 
   P  if (e) e1 else e2,s0  e',s2"

| CondF:
  " P  e,s0  false,s1; P  e2,s1  e',s2 
   P  if (e) e1 else e2,s0  e',s2"

| CondThrow:
  "P  e,s0  throw e',s1 
  P  if (e) e1 else e2, s0  throw e',s1"

| WhileF:
  "P  e,s0  false,s1 
  P  while (e) c,s0  unit,s1"

| WhileT:
  " P  e,s0  true,s1; P  c,s1  Val v1,s2; P  while (e) c,s2  e3,s3 
   P  while (e) c,s0  e3,s3"

| WhileCondThrow:
  "P  e,s0   throw e',s1 
  P  while (e) c,s0  throw e',s1"

| WhileBodyThrow:
  " P  e,s0  true,s1; P  c,s1  throw e',s2
   P  while (e) c,s0  throw e',s2"

| Throw:
  "P  e,s0  addr a,s1 
  P  throw e,s0  Throw a,s1"

| ThrowNull:
  "P  e,s0  null,s1 
  P  throw e,s0  THROW NullPointer,s1"

| ThrowThrow:
  "P  e,s0  throw e',s1 
  P  throw e,s0  throw e',s1"

| Try:
  "P  e1,s0  Val v1,s1 
  P  try e1 catch(C V) e2,s0  Val v1,s1"

| TryCatch:
  " P  e1,s0  Throw a,(h1,l1);  h1 a = Some(D,fs);  P  D * C;
     P  e2,(h1,l1(VAddr a))  e2',(h2,l2) 
   P  try e1 catch(C V) e2,s0  e2',(h2,l2(V:=l1 V))"

| TryThrow:
  " P  e1,s0  Throw a,(h1,l1);  h1 a = Some(D,fs);  ¬ P  D * C 
   P  try e1 catch(C V) e2,s0  Throw a,(h1,l1)"

| Nil:
  "P  [],s [⇒] [],s"

| Cons:
  " P  e,s0  Val v,s1; P  es,s1 [⇒] es',s2 
   P  e#es,s0 [⇒] Val v # es',s2"

| ConsThrow:
  "P  e, s0  throw e', s1 
  P  e#es, s0 [⇒] throw e' # es, s1"

(*<*)
lemmas eval_evals_induct = eval_evals.induct [split_format (complete)]
  and eval_evals_inducts = eval_evals.inducts [split_format (complete)]

inductive_cases eval_cases [cases set]:
 "P  Cast C e,s  e',s'"
 "P  Val v,s  e',s'"
 "P  e1 «bop» e2,s  e',s'"
 "P  V:=e,s  e',s'"
 "P  eF{D},s  e',s'"
 "P  e1F{D}:=e2,s  e',s'"
 "P  eM{D}(es),s  e',s'"
 "P  {V:T;e1},s  e',s'"
 "P  e1;;e2,s  e',s'"
 "P  if (e) e1 else e2,s  e',s'"
 "P  while (b) c,s  e',s'"
 "P  throw e,s  e',s'"
 "P  try e1 catch(C V) e2,s  e',s'"
 
inductive_cases evals_cases [cases set]:
 "P  [],s [⇒] e',s'"
 "P  e#es,s [⇒] e',s'"
(*>*) 


subsection"Final expressions"

definition final :: "'a exp  bool"
where
  "final e    (v. e = Val v)  (a. e = Throw a)"

definition finals:: "'a exp list  bool"
where
  "finals es    (vs. es = map Val vs)  (vs a es'. es = map Val vs @ Throw a # es')"

lemma [simp]: "final(Val v)"
(*<*)by(simp add:final_def)(*>*)

lemma [simp]: "final(throw e) = (a. e = addr a)"
(*<*)by(simp add:final_def)(*>*)

lemma finalE: " final e;  v. e = Val v  R;  a. e = Throw a  R   R"
(*<*)by(auto simp:final_def)(*>*)

lemma [iff]: "finals []"
(*<*)by(simp add:finals_def)(*>*)

lemma [iff]: "finals (Val v # es) = finals es"
(*<*)
proof(rule iffI)
  assume "finals (Val v # es)"
  moreover {
    fix vs a es'
    assume "vs a es'. es  map Val vs @ Throw a # es'"
      and "Val v # es = map Val vs @ Throw a # es'"
    then have "vs. es = map Val vs" by(case_tac vs; simp)
  }
  ultimately show "finals es" by(clarsimp simp add: finals_def)
next
  assume "finals es"
  moreover {
    fix vs a es'
    assume "es = map Val vs @ Throw a # es'"
    then have "vs' a' es''. Val v # map Val vs @ Throw a # es' = map Val vs' @ Throw a' # es''"
      by(rule_tac x = "v#vs" in exI) simp
  }
  ultimately show "finals (Val v # es)" by(clarsimp simp add: finals_def)
qed
(*>*)

lemma finals_app_map[iff]: "finals (map Val vs @ es) = finals es"
(*<*)by(induct_tac vs, auto)(*>*)

lemma [iff]: "finals (map Val vs)"
(*<*)using finals_app_map[of vs "[]"]by(simp)(*>*)

lemma [iff]: "finals (throw e # es) = (a. e = addr a)"
(*<*)
proof(rule iffI)
  assume "finals (throw e # es)"
  moreover {
    fix vs a es'
    assume "throw e # es = map Val vs @ Throw a # es'"
    then have "a. e = addr a" by(case_tac vs; simp)
  }
  ultimately show "a. e = addr a" by(clarsimp simp add: finals_def)
next
  assume "a. e = addr a"
  moreover {
    fix vs a es'
    assume "e = addr a"
    then have "vs aa es'. Throw a # es = map Val vs @ Throw aa # es'"
      by(rule_tac x = "[]" in exI) simp
  }
  ultimately show "finals (throw e # es)" by(clarsimp simp add: finals_def)
qed
(*>*)

lemma not_finals_ConsI: "¬ final e  ¬ finals(e#es)"
(*<*)
proof -
  assume "¬ final e"
  moreover {
    fix vs a es'
    assume "v. e  Val v" and "a. e  Throw a"
    then have "e # es  map Val vs @ Throw a # es'" by(case_tac vs; simp)
  }
  ultimately show ?thesis by(clarsimp simp add:finals_def final_def)
qed
(*>*)


lemma eval_final: "P  e,s  e',s'  final e'"
 and evals_final: "P  es,s [⇒] es',s'  finals es'"
(*<*)by(induct rule:eval_evals.inducts, simp_all)(*>*)


lemma eval_lcl_incr: "P  e,(h0,l0)  e',(h1,l1)  dom l0  dom l1"
 and evals_lcl_incr: "P  es,(h0,l0) [⇒] es',(h1,l1)  dom l0  dom l1"
(*<*)
proof (induct rule: eval_evals_inducts)
  case BinOp show ?case by(rule subset_trans)(rule BinOp.hyps)+
next
  case Call thus ?case
    by(simp del: fun_upd_apply) 
next
  case Seq show ?case by(rule subset_trans)(rule Seq.hyps)+
next
  case CondT show ?case by(rule subset_trans)(rule CondT.hyps)+
next
  case CondF show ?case by(rule subset_trans)(rule CondF.hyps)+
next
  case WhileT thus ?case by(blast)
next
  case TryCatch thus ?case by(clarsimp simp:dom_def split:if_split_asm) blast
next
  case Cons show ?case by(rule subset_trans)(rule Cons.hyps)+
next
  case Block thus ?case by(auto simp del:fun_upd_apply)
qed auto
(*>*)

text‹Only used later, in the small to big translation, but is already a
good sanity check:›

lemma eval_finalId:  "final e  P  e,s  e,s"
(*<*)by (erule finalE) (iprover intro: eval_evals.intros)+(*>*)


lemma eval_finalsId:
assumes finals: "finals es" shows "P  es,s [⇒] es,s"
(*<*)
  using finals
proof (induct es type: list)
  case Nil show ?case by (rule eval_evals.intros)
next
  case (Cons e es)
  have hyp: "finals es  P  es,s [⇒] es,s"
   and finals: "finals (e # es)" by fact+
  show "P  e # es,s [⇒] e # es,s"
  proof cases
    assume "final e"
    thus ?thesis
    proof (cases rule: finalE)
      fix v assume e: "e = Val v"
      have "P  Val v,s  Val v,s" by (simp add: eval_finalId)
      moreover from finals e have "P  es,s [⇒] es,s" by(fast intro:hyp)
      ultimately have "P  Val v#es,s [⇒] Val v#es,s"
        by (rule eval_evals.intros)
      with e show ?thesis by simp
    next
      fix a assume e: "e = Throw a"
      have "P  Throw a,s  Throw a,s" by (simp add: eval_finalId)
      hence "P  Throw a#es,s [⇒] Throw a#es,s" by (rule eval_evals.intros)
      with e show ?thesis by simp
    qed
  next
    assume "¬ final e"
    with not_finals_ConsI finals have False by blast
    thus ?thesis ..
  qed
qed
(*>*)


theorem eval_hext: "P  e,(h,l)  e',(h',l')  h  h'"
and evals_hext:  "P  es,(h,l) [⇒] es',(h',l')  h  h'"
(*<*)
proof (induct rule: eval_evals_inducts)
  case New thus ?case
    by(fastforce intro!: hext_new intro:LeastI simp:new_Addr_def
                split:if_split_asm simp del:fun_upd_apply)
next
  case BinOp thus ?case by (fast elim!:hext_trans)
next
  case BinOpThrow2 thus ?case by(fast elim!: hext_trans)
next
  case FAss thus ?case
    by(auto simp:sym[THEN hext_upd_obj] simp del:fun_upd_apply
            elim!: hext_trans)
next
  case FAssNull thus ?case by (fast elim!:hext_trans)
next
  case FAssThrow2 thus ?case by (fast elim!:hext_trans)
next
  case CallParamsThrow thus ?case by(fast elim!: hext_trans)
next
  case CallNull thus ?case by(fast elim!: hext_trans)
next
  case Call thus ?case by(fast elim!: hext_trans)
next
  case Seq thus ?case by(fast elim!: hext_trans)
next
  case CondT thus ?case by(fast elim!: hext_trans)
next
  case CondF thus ?case by(fast elim!: hext_trans)
next
  case WhileT thus ?case by(fast elim!: hext_trans)
next
  case WhileBodyThrow thus ?case by (fast elim!: hext_trans)
next
  case TryCatch thus ?case  by(fast elim!: hext_trans)
next
  case Cons thus ?case by (fast intro: hext_trans)
qed auto
(*>*)


end