Theory Tarski_Neutral_Model_Gupta_Neutral
theory Tarski_Neutral_Model_Gupta_Neutral
imports Gupta_Neutral
begin
context Gupta_neutral_dimensionless
begin
interpretation Interpretation_Tarski_neutral_dimensionless: Tarski_neutral_dimensionless
where TPA = GPA and TPB = GPB and TPC = GPC and Bet = BetG and Cong = CongG
proof
show "∀a b. CongG a b b a"
by (simp add: cong_pseudo_reflexivityG)
show "∀a b p q r s. CongG a b p q ∧ CongG a b r s ⟶ CongG p q r s"
using cong_inner_transitivityG by blast
show "∀a b c. CongG a b c c ⟶ a = b"
by (simp add: cong_identityG)
show "∀a b c q. ∃x. BetG q a x ∧ CongG a x b c"
by (simp add: segment_constructionG)
show "∀a b c d a' b' c' d'. a ≠ b ∧ BetG a b c ∧ BetG a' b' c' ∧
CongG a b a' b' ∧ CongG b c b' c' ∧ CongG a d a' d' ∧ CongG b d b' d' ⟶
CongG c d c' d'"
using five_segmentG by blast
show "∀a b. BetG a b a ⟶ a = b"
by (simp add: between_identityT)
show "∀a b c p q. BetG a p c ∧ BetG b q c ⟶ (∃x. BetG p x b ∧ BetG q x a)"
using inner_paschT by blast
show "¬ BetG GPA GPB GPC ∧ ¬ BetG GPB GPC GPA ∧ ¬ BetG GPC GPA GPB"
using lower_dimG by blast
qed
subsection "Transport theorem from Tarski Neutral for Gupta Euclidean Model"
lemma g_l5_2:
assumes "A ≠ B" and
"BetG A B C" and
"BetG A B D"
shows "BetG B C D ∨ BetG B D C"
using Interpretation_Tarski_neutral_dimensionless.l5_2 assms(1) assms(2) assms(3) by blast
lemma g_l5_3:
assumes "BetG A B D" and
"BetG A C D"
shows "BetG A B C ∨ BetG A C B"
using Interpretation_Tarski_neutral_dimensionless.l5_3 assms(1) assms(2) by blast
lemma g_between_exchange4:
assumes "BetG A B C" and
"BetG A C D"
shows "BetG A B D"
using assms(1) assms(2)
Interpretation_Tarski_neutral_dimensionless.between_exchange4 by blast
lemma g_between_inner_transitivity:
assumes "BetG A B D" and
"BetG B C D"
shows "BetG A B C"
using assms(1) assms(2)
Interpretation_Tarski_neutral_dimensionless.between_inner_transitivity by blast
lemma g_not_bet_distincts:
assumes "¬ BetG A B C"
shows "A ≠ B ∧ B ≠ C"
using assms Interpretation_Tarski_neutral_dimensionless.not_bet_distincts by blast
lemma g_between_symmetry:
assumes "BetG A B C"
shows "BetG C B A"
using assms Interpretation_Tarski_neutral_dimensionless.between_symmetry by blast
lemma g_between_trivial:
shows "BetG A B B"
using Interpretation_Tarski_neutral_dimensionless.between_trivial by blast
end
end