Theory Highschool_Euclidean_2D
theory Highschool_Euclidean_2D
imports
Highschool_Euclidean
Tarski_Euclidean_2D
begin
section "Highschool Euclidean 2D"
context Tarski_Euclidean_2D
begin
subsection "Definitions"
subsection "Propositions"
lemma NewEX1:
assumes "Square A B C D" and
"Cong K A K C" and
"Cong K A A C"
shows "Col B K D"
proof -
obtain M where "M Midpoint A C"
using MidR_uniq_aux by blast
have "Cong B A B C"
using Cong_cases Square_def assms(1) by auto
hence "Per A M B"
using Per_def ‹M Midpoint A C› l8_2 by blast
hence "A M Perp M B"
by (metis Square_def Square_not_triv_3 ‹M Midpoint A C› assms(1)
cong_diff_2 is_midpoint_id l8_7 midpoint_thales_reci per_perp rect_per)
have "Cong D A D C"
using Square_def assms(1)
by (meson Square_Rhombus cong_inner_transitivity not_cong_4312 rmb_cong)
hence "Per A M D"
using Per_def Per_perm ‹M Midpoint A C› cong_left_commutativity by blast
hence "A M Perp M D"
by (metis Cong_cases Square_def ‹A M Perp M B› ‹M Midpoint A C›
assms(1) between_cong between_trivial2 midpoint_cong
midpoint_thales_reci_2 per_perp rect_per)
moreover
have "Per A M K"
using Per_def ‹M Midpoint A C› assms(2) l8_2 by blast
hence "A M Perp M K"
by (metis ‹A M Perp M B› ‹M Midpoint A C› assms(3)
between_cong midpoint_bet midpoint_distinct_2
not_cong_2134 per_perp perp_distinct)
ultimately
show ?thesis
by (metis Col_def ‹Cong B A B C› ‹Cong D A D C› assms(2) assms(3)
cong_diff perp2__col perp_not_col upper_dim)
qed
end
end