Theory Gupta_Euclidean_Model_Tarski_Euclidean
theory Gupta_Euclidean_Model_Tarski_Euclidean
imports
Tarski_Euclidean
Gupta_Euclidean
begin
context Tarski_Euclidean
begin
interpretation Interpretation_Gupta_euclidean : Gupta_Euclidean
where GPA = TPA and GPB = TPB and GPC = TPC and BetG = Bet and CongG = Cong
proof
show "∀a b. Cong a b b a"
by (simp add: cong_pseudo_reflexivity)
show "∀a b p q r s. Cong a b p q ∧ Cong a b r s ⟶ Cong p q r s"
using cong_inner_transitivity by blast
show "∀a b c. Cong a b c c ⟶ a = b"
using cong_diff by blast
show "∀a b c q. ∃x. Bet q a x ∧ Cong a x b c"
using segment_construction by force
show "∀a b c d a' b' c' d'. a ≠ b ∧ Bet a b c ∧ Bet a' b' c' ∧ Cong a b a' b' ∧
Cong b c b' c' ∧ Cong a d a' d' ∧ Cong b d b' d' ⟶
Cong c d c' d'"
using five_segment by blast
show "∀a b c. Bet a b c ⟶ Bet c b a"
using between_symmetry by blast
show "∀a b c d. Bet a b d ∧ Bet b c d ⟶ Bet a b c"
using between_inner_transitivity by blast
show "∀a b c p q.
Bet a p c ∧ Bet b q c ∧ a ≠ p ∧ c ≠ p ∧ b ≠ q ∧ c ≠ q ∧
¬ (Bet a b c ∨ Bet b c a ∨ Bet c a b) ⟶
(∃x. Bet p x b ∧ Bet q x a)"
using inner_pasch by blast
show "¬ (Bet TPA TPB TPC ∨ Bet TPB TPC TPA ∨ Bet TPC TPA TPB)"
by (simp add: lower_dim)
show "∀A B C D T.
Bet A D T ∧
Bet B D C ∧ B ≠ D ∧ D ≠ C ∧ ¬ (Bet A B C ∨ Bet B C A ∨ Bet C A B) ⟶
(∃x y. Bet A B x ∧ Bet A C y ∧ Bet x T y)"
using Bet_perm tarski_s_parallel_postulate_def tarski_s_parallel_postulate_thm by blast
qed
end
end