Theory Inca_to_Ubx_simulation
theory Inca_to_Ubx_simulation
imports List_util Result
"VeriComp.Simulation"
Inca Ubx Ubx_Verification Unboxed_lemmas
begin
lemma take_:"Suc n = length xs ⟹ take n xs = butlast xs"
using butlast_conv_take diff_Suc_1 append_butlast_last_id
by (metis butlast_conv_take diff_Suc_1)
lemma append_take_singleton_conv:"Suc n = length xs ⟹ xs = take n xs @ [xs ! n]"
proof (induction xs arbitrary: n)
case Nil
then show ?case by simp
next
case (Cons x xs)
then show ?case
proof (cases n)
case 0
then show ?thesis
using Cons
by simp
next
case (Suc n')
have "Suc n' = length xs"
by (rule Cons.prems[unfolded Suc, simplified])
from Suc show ?thesis
by (auto intro: Cons.IH[OF ‹Suc n' = length xs›])
qed
qed
section ‹Locale imports›
locale inca_to_ubx_simulation =
Sinca: inca
Finca_empty Finca_get Finca_add Finca_to_list
heap_empty heap_get heap_add heap_to_list
uninitialized is_true is_false
𝔒𝔭 𝔄𝔯𝔦𝔱𝔶 ℑ𝔫𝔩𝔒𝔭 ℑ𝔫𝔩 ℑ𝔰ℑ𝔫𝔩 𝔇𝔢ℑ𝔫𝔩 +
Subx: ubx
Fubx_empty Fubx_get Fubx_add Fubx_to_list
heap_empty heap_get heap_add heap_to_list
uninitialized is_true is_false
box_ubx1 unbox_ubx1 box_ubx2 unbox_ubx2
𝔒𝔭 𝔄𝔯𝔦𝔱𝔶 ℑ𝔫𝔩𝔒𝔭 ℑ𝔫𝔩 ℑ𝔰ℑ𝔫𝔩 𝔇𝔢ℑ𝔫𝔩 𝔘𝔟𝔵𝔒𝔭 𝔘𝔟𝔵 𝔅𝔬𝔵 𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭
for
Finca_empty and
Finca_get :: "'fenv_inca ⇒ 'fun ⇒ ('label, ('dyn, 'var, 'fun, 'label, 'op, 'opinl) Inca.instr) fundef option" and
Finca_add and Finca_to_list and
Fubx_empty and
Fubx_get :: "'fenv_ubx ⇒ 'fun ⇒ ('label, ('dyn, 'var, 'fun, 'label, 'op, 'opinl, 'opubx, 'ubx1, 'ubx2) Ubx.instr) fundef option" and
Fubx_add and Fubx_to_list and
heap_empty and heap_get :: "'henv ⇒ 'var × 'dyn ⇒ 'dyn option" and heap_add and heap_to_list and
uninitialized :: 'dyn and is_true and is_false and
box_ubx1 and unbox_ubx1 and
box_ubx2 and unbox_ubx2 and
𝔒𝔭 and 𝔄𝔯𝔦𝔱𝔶 and ℑ𝔫𝔩𝔒𝔭 and ℑ𝔫𝔩 and ℑ𝔰ℑ𝔫𝔩 and 𝔇𝔢ℑ𝔫𝔩 and 𝔘𝔟𝔵𝔒𝔭 and 𝔘𝔟𝔵 and 𝔅𝔬𝔵 and 𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭
begin
section ‹Normalization›
fun norm_instr where
"norm_instr (Ubx.IPush d) = Inca.IPush d" |
"norm_instr (Ubx.IPushUbx1 n) = Inca.IPush (box_ubx1 n)" |
"norm_instr (Ubx.IPushUbx2 b) = Inca.IPush (box_ubx2 b)" |
"norm_instr Ubx.IPop = Inca.IPop" |
"norm_instr (Ubx.IGet n) = Inca.IGet n" |
"norm_instr (Ubx.IGetUbx _ n) = Inca.IGet n" |
"norm_instr (Ubx.ISet n) = Inca.ISet n" |
"norm_instr (Ubx.ISetUbx _ n) = Inca.ISet n" |
"norm_instr (Ubx.ILoad x) = Inca.ILoad x" |
"norm_instr (Ubx.ILoadUbx _ x) = Inca.ILoad x" |
"norm_instr (Ubx.IStore x) = Inca.IStore x" |
"norm_instr (Ubx.IStoreUbx _ x) = Inca.IStore x" |
"norm_instr (Ubx.IOp op) = Inca.IOp op" |
"norm_instr (Ubx.IOpInl op) = Inca.IOpInl op" |
"norm_instr (Ubx.IOpUbx op) = Inca.IOpInl (𝔅𝔬𝔵 op)" |
"norm_instr (Ubx.ICJump l⇩t l⇩f) = Inca.ICJump l⇩t l⇩f" |
"norm_instr (Ubx.ICall x) = Inca.ICall x" |
"norm_instr Ubx.IReturn = Inca.IReturn"
lemma norm_generalize_instr[simp]: "norm_instr (Subx.generalize_instr instr) = norm_instr instr"
by (cases instr) simp_all
abbreviation norm_eq where
"norm_eq x y ≡ x = norm_instr y"
definition rel_fundefs where
"rel_fundefs f g = (∀x. rel_option (rel_fundef (=) norm_eq) (f x) (g x))"
lemma rel_fundefsI:
assumes "⋀x. rel_option (rel_fundef (=) norm_eq) (F1 x) (F2 x)"
shows "rel_fundefs F1 F2"
using assms
by (simp add: rel_fundefs_def)
lemma rel_fundefsD:
assumes "rel_fundefs F1 F2"
shows "rel_option (rel_fundef (=) norm_eq) (F1 x) (F2 x)"
using assms
by (simp add: rel_fundefs_def)
lemma rel_fundefs_next_instr:
assumes rel_F1_F2: "rel_fundefs F1 F2"
shows "rel_option norm_eq (next_instr F1 f l pc) (next_instr F2 f l pc)"
using rel_F1_F2[THEN rel_fundefsD, of f]
proof (cases rule: option.rel_cases)
case None
thus ?thesis by (simp add: next_instr_def)
next
case (Some fd1 fd2)
then show ?thesis
by (auto simp: next_instr_def intro: rel_fundef_imp_rel_option_instr_at)
qed
lemma rel_fundefs_next_instr1:
assumes rel_F1_F2: "rel_fundefs F1 F2" and next_instr1: "next_instr F1 f l pc = Some instr1"
shows "∃instr2. next_instr F2 f l pc = Some instr2 ∧ norm_eq instr1 instr2"
using rel_fundefs_next_instr[OF rel_F1_F2, of f l pc]
unfolding next_instr1
unfolding option_rel_Some1
by assumption
lemma rel_fundefs_next_instr2:
assumes rel_F1_F2: "rel_fundefs F1 F2" and next_instr2: "next_instr F2 f l pc = Some instr2"
shows "∃instr1. next_instr F1 f l pc = Some instr1 ∧ norm_eq instr1 instr2"
using rel_fundefs_next_instr[OF rel_F1_F2, of f l pc]
unfolding next_instr2
unfolding option_rel_Some2
by assumption
lemma rel_fundefs_empty: "rel_fundefs (λ_. None) (λ_. None)"
by (simp add: rel_fundefs_def)
lemma rel_fundefs_None1:
assumes "rel_fundefs f g" and "f x = None"
shows "g x = None"
by (metis assms rel_fundefs_def rel_option_None1)
lemma rel_fundefs_None2:
assumes "rel_fundefs f g" and "g x = None"
shows "f x = None"
by (metis assms rel_fundefs_def rel_option_None2)
lemma rel_fundefs_Some1:
assumes "rel_fundefs f g" and "f x = Some y"
shows "∃z. g x = Some z ∧ rel_fundef (=) norm_eq y z"
proof -
from assms(1) have "rel_option (rel_fundef (=) norm_eq) (f x) (g x)"
unfolding rel_fundefs_def by simp
with assms(2) show ?thesis
by (simp add: option_rel_Some1)
qed
lemma rel_fundefs_Some2:
assumes "rel_fundefs f g" and "g x = Some y"
shows "∃z. f x = Some z ∧ rel_fundef (=) norm_eq z y"
proof -
from assms(1) have "rel_option (rel_fundef (=) norm_eq) (f x) (g x)"
unfolding rel_fundefs_def by simp
with assms(2) show ?thesis
by (simp add: option_rel_Some2)
qed
lemma rel_fundefs_rel_option:
assumes "rel_fundefs f g" and "⋀x y. rel_fundef (=) norm_eq x y ⟹ h x y"
shows "rel_option h (f z) (g z)"
proof -
have "rel_option (rel_fundef (=) norm_eq) (f z) (g z)"
using assms(1)[unfolded rel_fundefs_def] by simp
then show ?thesis
unfolding rel_option_unfold
by (auto simp add: assms(2))
qed
lemma rel_fundef_generalizeI:
assumes "rel_fundef (=) norm_eq fd1 fd2"
shows "rel_fundef (=) norm_eq fd1 (Subx.generalize_fundef fd2)"
using assms
by (cases rule: fundef.rel_cases)
(auto simp: map_ran_def list.rel_map elim: list.rel_mono_strong)
lemma rel_fundefs_generalizeI:
assumes "rel_fundefs (Finca_get F1) (Fubx_get F2)"
shows "rel_fundefs (Finca_get F1) (Fubx_get (Subx.Fenv.map_entry F2 f Subx.generalize_fundef))"
proof (rule rel_fundefsI)
fix x
show "rel_option (rel_fundef (=) norm_eq)
(Finca_get F1 x) (Fubx_get (Subx.Fenv.map_entry F2 f Subx.generalize_fundef) x)"
unfolding Subx.Fenv.get_map_entry_conv
unfolding option.rel_map
using assms(1)[THEN rel_fundefsD, of x]
by (auto intro: rel_fundef_generalizeI elim: option.rel_mono_strong)
qed
lemma rel_fundefs_rewriteI:
assumes
rel_F1_F2: "rel_fundefs (Finca_get F1) (Fubx_get F2)" and
"norm_eq instr1' instr2'"
shows "rel_fundefs
(Finca_get (Sinca.Fenv.map_entry F1 f (λfd. rewrite_fundef_body fd l pc instr1')))
(Fubx_get (Subx.Fenv.map_entry F2 f (λfd. rewrite_fundef_body fd l pc instr2')))"
(is "rel_fundefs (Finca_get ?F1') (Fubx_get ?F2')")
proof (rule rel_fundefsI)
fix x
show "rel_option (rel_fundef (=) norm_eq) (Finca_get ?F1' x) (Fubx_get ?F2' x)"
proof (cases "f = x")
case True
show ?thesis
using rel_F1_F2[THEN rel_fundefsD, of x] True assms(2)
by (cases rule: option.rel_cases) (auto intro: rel_fundef_rewrite_body)
next
case False
then show ?thesis
using rel_F1_F2[THEN rel_fundefsD, of x] by simp
qed
qed
section ‹Equivalence of call stacks›
definition norm_stack :: "('dyn, 'ubx1, 'ubx2) unboxed list ⇒ 'dyn list" where
"norm_stack Σ ≡ List.map Subx.norm_unboxed Σ"
lemma norm_stack_Nil[simp]: "norm_stack [] = []"
by (simp add: norm_stack_def)
lemma norm_stack_Cons[simp]: "norm_stack (d # Σ) = Subx.norm_unboxed d # norm_stack Σ"
by (simp add: norm_stack_def)
lemma norm_stack_append: "norm_stack (xs @ ys) = norm_stack xs @ norm_stack ys"
by (simp add: norm_stack_def)
lemmas drop_norm_stack = drop_map[where f = Subx.norm_unboxed, folded norm_stack_def]
lemmas take_norm_stack = take_map[where f = Subx.norm_unboxed, folded norm_stack_def]
lemmas norm_stack_map = map_map[where f = Subx.norm_unboxed, folded norm_stack_def]
lemma norm_box_stack[simp]: "norm_stack (map Subx.box_operand Σ) = norm_stack Σ"
by (induction Σ) (auto simp: norm_stack_def)
lemma length_norm_stack[simp]: "length (norm_stack xs) = length xs"
by (simp add: norm_stack_def)
definition is_valid_fun_call where
"is_valid_fun_call F f l pc Σ g ≡ next_instr F f l pc = Some (ICall g) ∧
(∃gd. F g = Some gd ∧ arity gd ≤ length Σ ∧ list_all is_dyn_operand (take (arity gd) Σ))"
lemma is_valid_funcall_map_entry_generalize_fundefI:
assumes "is_valid_fun_call (Fubx_get F2) g l pc Σ z"
shows "is_valid_fun_call (Fubx_get (Subx.Fenv.map_entry F2 f Subx.generalize_fundef)) g l pc Σ z"
proof (cases "f = z")
case True
then show ?thesis
using assms
by (cases "z = g")
(auto simp: is_valid_fun_call_def next_instr_def Subx.instr_at_generalize_fundef_conv)
next
case False
then show ?thesis
using assms
by (cases "Fubx_get F2 g")
(auto simp: is_valid_fun_call_def next_instr_def
Subx.instr_at_generalize_fundef_conv Subx.Fenv.get_map_entry_conv)
qed
lemma is_valid_fun_call_map_box_operandI:
assumes "is_valid_fun_call (Fubx_get F2) g l pc Σ z"
shows "is_valid_fun_call (Fubx_get F2) g l pc (map Subx.box_operand Σ) z"
using assms
unfolding is_valid_fun_call_def
by (auto simp: take_map list.pred_map list.pred_True)
lemma inst_at_rewrite_fundef_body_disj:
"instr_at (rewrite_fundef_body fd l pc instr) l pc = Some instr ∨
instr_at (rewrite_fundef_body fd l pc instr) l pc = None"
proof (cases fd)
case (Fundef bblocks ar locals)
show ?thesis
proof (cases "map_of bblocks l")
case None
thus ?thesis
using Fundef
by (simp add: rewrite_fundef_body_def instr_at_def map_entry_map_of_None_conv)
next
case (Some instr')
moreover hence "l ∈ fst ` set bblocks"
by (meson domI domIff map_of_eq_None_iff)
ultimately show ?thesis
using Fundef
apply (auto simp add: rewrite_fundef_body_def instr_at_def map_entry_map_of_Some_conv)
by (smt (verit, ccfv_threshold) length_list_update nth_list_update_eq option.case_eq_if option.distinct(1) option.sel update_Some_unfold)
qed
qed
lemma is_valid_fun_call_map_entry_conv:
assumes "next_instr (Fubx_get F2) f l pc = Some instr" "¬ is_fun_call instr" "¬ is_fun_call instr'"
shows
"is_valid_fun_call (Fubx_get (Subx.Fenv.map_entry F2 f (λfd. rewrite_fundef_body fd l pc instr')))=
is_valid_fun_call (Fubx_get F2)"
proof (intro ext)
fix f' l' pc' Σ g
show
"is_valid_fun_call (Fubx_get (Subx.Fenv.map_entry F2 f (λfd. rewrite_fundef_body fd l pc instr'))) f' l' pc' Σ g =
is_valid_fun_call (Fubx_get F2) f' l' pc' Σ g"
proof (cases "f = f'")
case True
then show ?thesis
using assms
apply (cases "f = g")
by (auto simp: is_valid_fun_call_def next_instr_eq_Some_conv
instr_at_rewrite_fundef_body_conv if_split_eq1)
next
case False
then show ?thesis
using assms
apply (cases "f = g")
by (auto simp: is_valid_fun_call_def next_instr_eq_Some_conv)
qed
qed
lemma is_valid_fun_call_map_entry_neq_f_neq_l:
assumes "f ≠ g" "l ≠ l'"
shows
"is_valid_fun_call (Fubx_get (Subx.Fenv.map_entry F2 f (λfd. rewrite_fundef_body fd l pc instr'))) g l' =
is_valid_fun_call (Fubx_get F2) g l'"
apply (intro ext)
unfolding is_valid_fun_call_def
using assms
apply (simp add: next_instr_eq_Some_conv)
apply (rule iffI; simp)
unfolding Subx.Fenv.get_map_entry_conv
apply simp
apply (metis arity_rewrite_fundef_body)
apply safe
by simp
inductive rel_stacktraces for F where
rel_stacktraces_Nil:
"rel_stacktraces F opt [] []" |
rel_stacktraces_Cons:
"rel_stacktraces F (Some f) st1 st2 ⟹
Σ1 = map Subx.norm_unboxed Σ2 ⟹
R1 = map Subx.norm_unboxed R2 ⟹
list_all is_dyn_operand R2 ⟹
F f = Some fd2 ⟹ map_of (body fd2) l = Some instrs ⟹
Subx.sp_instrs (map_option funtype ∘ F) (return fd2) (take pc instrs) [] (map typeof Σ2) ⟹
pred_option (is_valid_fun_call F f l pc Σ2) opt ⟹
rel_stacktraces F opt (Frame f l pc R1 Σ1 # st1) (Frame f l pc R2 Σ2 # st2)"
lemma rel_stacktraces_map_entry_gneralize_fundefI[intro]:
assumes "rel_stacktraces (Fubx_get F2) opt st1 st2"
shows "rel_stacktraces (Fubx_get (Subx.Fenv.map_entry F2 f Subx.generalize_fundef))
opt st1 (Subx.box_stack f st2)"
using assms(1)
proof (induction opt st1 st2 rule: rel_stacktraces.induct)
case (rel_stacktraces_Nil opt)
thus ?case
by (auto intro: rel_stacktraces.rel_stacktraces_Nil)
next
case (rel_stacktraces_Cons g st1 st2 Σ1 Σ2 R1 R2 gd2 l instrs pc opt)
show ?case
proof (cases "f = g")
case True
then show ?thesis
using rel_stacktraces_Cons
apply auto
apply (rule rel_stacktraces.rel_stacktraces_Cons)
apply assumption
apply simp
apply (rule refl)
apply assumption
apply simp
by (auto simp add: take_map Subx.map_of_generalize_fundef_conv
intro!: Subx.sp_instrs_generalize0
intro!: is_valid_funcall_map_entry_generalize_fundefI is_valid_fun_call_map_box_operandI
elim!: option.pred_mono_strong)
next
case False
then show ?thesis
using rel_stacktraces_Cons
by (auto intro: rel_stacktraces.intros is_valid_funcall_map_entry_generalize_fundefI
elim!: option.pred_mono_strong)
qed
qed
lemma rel_stacktraces_map_entry_rewrite_fundef_body:
assumes
"rel_stacktraces (Fubx_get F2) opt st1 st2" and
"next_instr (Fubx_get F2) f l pc = Some instr" and
"⋀ret. Subx.sp_instr (map_option funtype ∘ Fubx_get F2) ret instr =
Subx.sp_instr (map_option funtype ∘ Fubx_get F2) ret instr'" and
"¬ is_fun_call instr" "¬ is_fun_call instr'"
shows "rel_stacktraces
(Fubx_get (Subx.Fenv.map_entry F2 f (λfd. rewrite_fundef_body fd l pc instr'))) opt st1 st2"
using assms(1)
proof (induction opt st1 st2 rule: rel_stacktraces.induct)
case (rel_stacktraces_Nil opt)
then show ?case
by (auto intro: rel_stacktraces.rel_stacktraces_Nil)
next
case (rel_stacktraces_Cons g st1 st2 Σ1 Σ2 R1 R2 gd2 l' instrs pc' opt)
show ?case (is "rel_stacktraces (Fubx_get ?F2') opt ?st1 ?st2")
proof (cases "f = g")
case True
show ?thesis
proof (cases "l' = l")
case True
show ?thesis
apply (rule rel_stacktraces.rel_stacktraces_Cons)
using rel_stacktraces_Cons.IH apply simp
using rel_stacktraces_Cons.hyps apply simp
using rel_stacktraces_Cons.hyps apply simp
using rel_stacktraces_Cons.hyps apply simp
using rel_stacktraces_Cons.hyps ‹f = g› apply simp
using rel_stacktraces_Cons.hyps True apply simp
using rel_stacktraces_Cons.hyps apply simp
using rel_stacktraces_Cons.hyps assms ‹f = g› True
apply (cases "pc' ≤ pc") []
apply (auto simp add: take_update_swap intro!: Subx.sp_instrs_list_update
dest!: next_instrD instr_atD) [2]
using rel_stacktraces_Cons.hyps
unfolding is_valid_fun_call_map_entry_conv[OF assms(2,4,5)]
by simp
next
case False
show ?thesis
proof (rule rel_stacktraces.rel_stacktraces_Cons)
show "Fubx_get ?F2' g = Some (rewrite_fundef_body gd2 l pc instr')"
unfolding ‹f = g›
using rel_stacktraces_Cons.hyps by simp
next
show "pred_option (is_valid_fun_call (Fubx_get ?F2') g l' pc' Σ2) opt"
unfolding is_valid_fun_call_map_entry_conv[OF assms(2,4,5)]
using rel_stacktraces_Cons.hyps by simp
qed (insert rel_stacktraces_Cons False, simp_all)
qed
next
case False
then show ?thesis
using rel_stacktraces_Cons
by (auto simp: is_valid_fun_call_map_entry_conv[OF assms(2,4,5)]
intro!: rel_stacktraces.rel_stacktraces_Cons)
qed
qed
section ‹Simulation relation›
inductive match (infix ‹∼› 55) where
matchI: "Subx.wf_state (State F2 H st2) ⟹
rel_fundefs (Finca_get F1) (Fubx_get F2) ⟹
rel_stacktraces (Fubx_get F2) None st1 st2 ⟹
match (State F1 H st1) (State F2 H st2)"
lemmas matchI[consumes 0, case_names wf_state rel_fundefs rel_stacktraces] = match.intros(1)
section ‹Backward simulation›
lemma map_eq_append_map_drop:
"map f xs = ys @ map f (drop n xs) ⟷ map f (take n xs) = ys"
by (metis append_same_eq append_take_drop_id map_append)
lemma ap_map_list_cast_Dyn_to_map_norm:
assumes "ap_map_list cast_Dyn xs = Some ys"
shows "ys = map Subx.norm_unboxed xs"
proof -
from assms have "list_all2 (λx y. cast_Dyn x = Some y) xs ys"
by (simp add: ap_map_list_iff_list_all2)
thus ?thesis
by (induction xs ys rule: list.rel_induct) (auto dest: cast_inversions)
qed
lemma ap_map_list_cast_Dyn_to_all_Dyn:
assumes "ap_map_list cast_Dyn xs = Some ys"
shows "list_all (λx. typeof x = None) xs"
proof -
from assms have "list_all2 (λx y. cast_Dyn x = Some y) xs ys"
by (simp add: ap_map_list_iff_list_all2)
hence "list_all2 (λx y. typeof x = None) xs ys"
by (auto intro: list.rel_mono_strong cast_Dyn_eq_Some_imp_typeof)
thus ?thesis
by (induction xs ys rule: list.rel_induct) auto
qed
lemma ap_map_list_cast_Dyn_map_typeof_replicate_conv:
assumes "ap_map_list cast_Dyn xs = Some ys" and "n = length xs"
shows "map typeof xs = replicate n None"
using assms
by (auto simp: list.pred_set intro!: replicate_eq_map[symmetric]
dest!: ap_map_list_cast_Dyn_to_all_Dyn)
lemma cast_Dyn_eq_Some_conv_norm_unboxed[simp]: "cast_Dyn i = Some i' ⟹ Subx.norm_unboxed i = i'"
by (cases i) simp_all
lemma cast_Dyn_eq_Some_conv_typeof[simp]: "cast_Dyn i = Some i' ⟹ typeof i = None"
by (cases i) simp_all
lemma backward_lockstep_simulation:
assumes "match s1 s2" and "Subx.step s2 s2'"
shows "∃s1'. Sinca.step s1 s1' ∧ match s1' s2'"
using assms
proof (induction s1 s2 rule: match.induct)
case (matchI F2 H st2 F1 st1)
from matchI(3,1,2,4) show ?case
proof (induction "None :: 'fun option" st1 st2 rule: rel_stacktraces.induct)
case rel_stacktraces_Nil
hence False by (auto elim: Subx.step.cases)
thus ?case by simp
next
case (rel_stacktraces_Cons f st1 st2 Σ1 Σ2 R1 R2 fd2 l instrs pc)
note hyps = rel_stacktraces_Cons.hyps
note prems = rel_stacktraces_Cons.prems
have wf_state2: "Subx.wf_state (State F2 H (Frame f l pc R2 Σ2 # st2))" using prems by simp
have rel_F1_F2: "rel_fundefs (Finca_get F1) (Fubx_get F2)" using prems by simp
have rel_st1_st2: "rel_stacktraces (Fubx_get F2) (Some f) st1 st2" using hyps by simp
have Σ1_def: "Σ1 = map Subx.norm_unboxed Σ2" using hyps by simp
have R1_def: "R1 = map Subx.norm_unboxed R2" using hyps by simp
have all_dyn_R2: "list_all is_dyn_operand R2" using hyps by simp
have F2_f: "Fubx_get F2 f = Some fd2" using hyps by simp
have map_of_fd2_l: "map_of (body fd2) l = Some instrs" using hyps by simp
have sp_instrs_prefix: "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2)
(take pc instrs) [] (map typeof Σ2)"
using hyps by simp
note next_instr2 = rel_fundefs_next_instr2[OF rel_F1_F2]
note sp_instrs_prefix' =
Subx.sp_instrs_singletonI[THEN Subx.sp_instrs_appendI[OF sp_instrs_prefix]]
obtain fd1 where
F1_f: "Finca_get F1 f = Some fd1" and rel_fd1_fd2: "rel_fundef (=) norm_eq fd1 fd2"
using rel_fundefs_Some2[OF rel_F1_F2 F2_f] by auto
have wf_F2: "Subx.wf_fundefs (Fubx_get F2)"
by (rule wf_state2[THEN Subx.wf_stateD, simplified])
have wf_fd2: "Subx.wf_fundef (map_option funtype ∘ Fubx_get F2) fd2"
using F2_f wf_F2[THEN Subx.wf_fundefsD, THEN spec, of f]
by simp
have
instrs_neq_Nil: "instrs ≠ []" and
all_jumps_in_range: "list_all (Subx.jump_in_range (fst ` set (body fd2))) instrs" and
sp_instrs_instrs: "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2) instrs [] []"
using list_all_map_of_SomeD[OF wf_fd2[THEN Subx.wf_fundef_all_wf_basic_blockD] map_of_fd2_l]
by (auto dest: Subx.wf_basic_blockD)
have sp_instrs_instrs': "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2)
(butlast instrs @ [instrs ! pc]) [] []" if pc_def: "pc = length instrs - 1"
unfolding pc_def last_conv_nth[OF instrs_neq_Nil, symmetric]
unfolding append_butlast_last_id[OF instrs_neq_Nil]
by (rule sp_instrs_instrs)
have sp_instr_last: "Subx.sp_instr (map_option funtype ∘ Fubx_get F2) (return fd2)
(instrs ! pc) (map typeof Σ2) []" if pc_def: "pc = length instrs - 1"
using sp_instrs_instrs'[OF pc_def]
using sp_instrs_prefix[unfolded pc_def butlast_conv_take[symmetric]]
by (auto dest!: Subx.sp_instrs_appendD')
from list_all_map_of_SomeD[OF wf_fd2[THEN Subx.wf_fundef_all_wf_basic_blockD] map_of_fd2_l]
have is_jump_nthD: "⋀n. is_jump (instrs ! n) ⟹ n < length instrs ⟹ n = length instrs - 1"
by (auto dest!: Subx.wf_basic_blockD
list_all_butlast_not_nthD[of "λi. ¬ is_jump i ∧ ¬ Ubx.instr.is_return i", simplified, OF _ disjI1])
note wf_s2' = Subx.wf_state_step_preservation[OF wf_state2 prems(3)]
from prems(3) show ?case
using wf_s2'
proof (induction "State F2 H (Frame f l pc R2 Σ2 # st2)" s2' rule: Subx.step.induct)
case (step_push d)
let ?st1' = "Frame f l (Suc pc) R1 (d # Σ1) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
using step_push.hyps
by (auto intro!: Sinca.step_push dest: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_push.hyps rel_stacktraces_Cons
using Subx.sp_instr.Push[THEN sp_instrs_prefix']
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_push.prems rel_F1_F2
by (auto intro: match.intros)
qed
next
case (step_push_ubx1 n)
let ?st1' = "Frame f l (Suc pc) R1 (box_ubx1 n # Σ1) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
using step_push_ubx1.hyps
by (auto intro!: Sinca.step_push dest: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_push_ubx1.hyps rel_stacktraces_Cons
using Subx.sp_instr.PushUbx1[THEN sp_instrs_prefix']
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_push_ubx1.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_push_ubx2 b)
let ?st1' = "Frame f l (Suc pc) R1 (box_ubx2 b # Σ1) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
using step_push_ubx2.hyps
by (auto intro!: Sinca.step_push dest: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_push_ubx2.hyps rel_stacktraces_Cons
using Subx.sp_instr.PushUbx2[THEN sp_instrs_prefix']
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_push_ubx2.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_pop d Σ2')
let ?st1' = "Frame f l (Suc pc) R1 (map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_pop.hyps
by (auto intro!: Sinca.step_pop dest: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_pop.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Pop
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_pop.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_get n d)
let ?st1' = "Frame f l (Suc pc) R1 (R1 ! n # map Subx.norm_unboxed Σ2) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def R1_def
using step_get.hyps
by (auto intro!: Sinca.step_get dest: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_get.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Get
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_get.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_get_ubx_hit τ n d blob)
let ?st1' = "Frame f l (Suc pc) R1 (R1 ! n # map Subx.norm_unboxed Σ2) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def R1_def
using step_get_ubx_hit.hyps
by (auto intro!: Sinca.step_get dest: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_get_ubx_hit.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.GetUbx
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_get_ubx_hit.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_get_ubx_miss τ n d F2')
hence "R1 ! n = d"
by (simp add: R1_def)
let ?st1' = "Frame f l (Suc pc) R1 (R1 ! n # map Subx.norm_unboxed Σ2) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2' H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def R1_def
using step_get_ubx_miss.hyps
by (auto intro!: Sinca.step_get dest: next_instr2)
next
have "rel_stacktraces (Fubx_get F2') None ?st1' ?st2'"
apply simp
proof (rule rel_stacktraces.intros)
show "rel_stacktraces (Fubx_get F2') (Some f) st1 (Subx.box_stack f st2)"
unfolding step_get_ubx_miss.hyps
using rel_st1_st2
by (rule rel_stacktraces_map_entry_gneralize_fundefI)
next
show "Fubx_get F2' f = Some (Subx.generalize_fundef fd2)"
unfolding step_get_ubx_miss.hyps
using F2_f
by simp
next
show "map_of (body (Subx.generalize_fundef fd2)) l = Some (map Subx.generalize_instr instrs)"
unfolding Subx.map_of_generalize_fundef_conv
unfolding map_of_fd2_l
by simp
next
show "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2')
(return (Subx.generalize_fundef fd2))
(take (Suc pc) (map Subx.generalize_instr instrs))
[] (map typeof (OpDyn d # map Subx.box_operand Σ2))"
using step_get_ubx_miss.hyps F2_f map_of_fd2_l
by (auto simp: take_map take_Suc_conv_app_nth simp del: map_append
intro!: sp_instrs_prefix'[THEN Subx.sp_instrs_generalize0] Subx.sp_instr.GetUbx
dest!: next_instrD instr_atD)
qed (insert R1_def all_dyn_R2 ‹R1 ! n = d›, simp_all)
thus "?MATCH ?s1' (State F2' H ?st2')"
using step_get_ubx_miss.prems rel_F1_F2
unfolding step_get_ubx_miss.hyps
by (auto intro!: match.intros rel_fundefs_generalizeI)
qed
next
case (step_set n blob d R2' Σ2')
let ?st1' = "Frame f l (Suc pc) (map Subx.norm_unboxed R2') (map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def R1_def
using step_set.hyps
by (auto simp: map_update intro!: Sinca.step_set dest!: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_set.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Set
intro: list_all_list_updateI
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_set.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_set_ubx τ n blob d R2' Σ2')
let ?st1' = "Frame f l (Suc pc) (map Subx.norm_unboxed R2') (map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def R1_def
using step_set_ubx.hyps
by (auto simp: map_update intro!: Sinca.step_set dest!: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_set_ubx.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.SetUbx
intro: list_all_list_updateI
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_set_ubx.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_load x i i' d Σ2')
let ?st1' = "Frame f l (Suc pc) R1 (d # map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_load.hyps
by (auto intro!: Sinca.step_load dest!: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_load.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Load
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_load.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_load_ubx_hit τ x i i' d blob Σ2')
let ?st1' = "Frame f l (Suc pc) R1 (d # map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_load_ubx_hit.hyps
by (auto intro!: Sinca.step_load dest!: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_load_ubx_hit.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.LoadUbx
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_load_ubx_hit.prems rel_F1_F2
by (auto intro!: match.intros)
qed
next
case (step_load_ubx_miss τ x i i' d F2' Σ2')
let ?st1' = "Frame f l (Suc pc) R1 (d # map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2' H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_load_ubx_miss.hyps
by (auto intro!: Sinca.step_load dest!: next_instr2)
next
have "rel_stacktraces (Fubx_get F2') None ?st1' ?st2'"
apply simp
proof (rule rel_stacktraces.intros)
show "rel_stacktraces (Fubx_get F2') (Some f) st1 (Subx.box_stack f st2)"
unfolding step_load_ubx_miss
using rel_st1_st2
by (rule rel_stacktraces_map_entry_gneralize_fundefI)
next
show "Fubx_get F2' f = Some (Subx.generalize_fundef fd2)"
unfolding step_load_ubx_miss.hyps
using F2_f by (simp add: Subx.map_of_generalize_fundef_conv)
next
show "map_of (body (Subx.generalize_fundef fd2)) l =
Some (map Subx.generalize_instr instrs)"
unfolding Subx.map_of_generalize_fundef_conv
using step_load_ubx_miss.hyps F2_f map_of_fd2_l
by simp
next
show "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2') (return (Subx.generalize_fundef fd2))
(take (Suc pc) (map Subx.generalize_instr instrs))
[] (map typeof (OpDyn d # map Subx.box_operand Σ2'))"
using step_load_ubx_miss.hyps F2_f map_of_fd2_l
by (auto simp: take_map take_Suc_conv_app_nth simp del: map_append
intro!: sp_instrs_prefix'[THEN Subx.sp_instrs_generalize0] Subx.sp_instr.LoadUbx
dest!: next_instrD instr_atD)
qed (insert all_dyn_R2, simp_all add: R1_def)
thus "?MATCH ?s1' (State F2' H ?st2')"
using step_load_ubx_miss.prems rel_F1_F2
unfolding step_load_ubx_miss.hyps
by (auto intro: match.intros rel_fundefs_generalizeI)
qed
next
case (step_store x i i' y d H' Σ2')
let ?st1' = "Frame f l (Suc pc) R1 (map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H' ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H' ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_store.hyps
by (auto intro: Sinca.step_store dest!: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_store.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Store
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H' ?st2')"
using step_store.prems rel_F1_F2
by (auto intro: match.intros)
qed
next
case (step_store_ubx τ x i i' blob d H' Σ2')
let ?st1' = "Frame f l (Suc pc) R1 (map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H' ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H' ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_store_ubx.hyps
by (auto intro: Sinca.step_store dest!: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_store_ubx.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.StoreUbx
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H' ?st2')"
using step_store_ubx.prems rel_F1_F2
by (auto intro: match.intros)
qed
next
case (step_op op ar Σ2' x)
let ?st1' = "Frame f l (Suc pc) R1 (x # drop ar (map Subx.norm_unboxed Σ2)) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_op.hyps
by (auto simp: take_map ap_map_list_cast_Dyn_to_map_norm[symmetric]
intro!: Sinca.step_op dest!: next_instr2)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_op.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth drop_map map_eq_append_map_drop
simp: ap_map_list_cast_Dyn_map_typeof_replicate_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Op
dest!: next_instrD instr_atD)
thus "?MATCH ?s1' (State F2 H ?st2')"
using step_op.prems rel_F1_F2
by (auto intro: match.intros)
qed
next
case (step_op_inl op ar Σ2' opinl x F2')
let ?F1' = "Sinca.Fenv.map_entry F1 f (λfd. rewrite_fundef_body fd l pc (Inca.IOpInl opinl))"
let ?st1' = "Frame f l (Suc pc) R1 (x # drop ar (map Subx.norm_unboxed Σ2)) # st1"
let ?s1' = "State ?F1' H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2' H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_op_inl.hyps
by (auto simp: take_map ap_map_list_cast_Dyn_to_map_norm[symmetric]
intro!: Sinca.step_op_inl dest!: next_instr2)
next
show "?MATCH ?s1' (State F2' H ?st2')"
using step_op_inl.prems
proof (rule match.intros)
show "rel_fundefs (Finca_get ?F1') (Fubx_get F2')"
unfolding step_op_inl.hyps
using rel_F1_F2
by (auto intro: rel_fundefs_rewriteI)
next
let ?fd2' = "rewrite_fundef_body fd2 l pc (Ubx.instr.IOpInl opinl)"
let ?instrs' = "instrs[pc := Ubx.instr.IOpInl opinl]"
show "rel_stacktraces (Fubx_get F2') None ?st1' ?st2'"
proof (rule rel_stacktraces.intros)
show "rel_stacktraces (Fubx_get F2') (Some f) st1 st2"
using step_op_inl.hyps rel_st1_st2 Sinca.ℑ𝔫𝔩_invertible
by (auto simp: Subx.sp_instr_Op_OpInl_conv
intro: rel_stacktraces_map_entry_rewrite_fundef_body)
next
show "Fubx_get F2' f = Some ?fd2'"
unfolding step_op_inl.hyps
using F2_f by simp
next
show "map_of (body ?fd2') l = Some ?instrs'"
using map_of_fd2_l by simp
next
show "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2')
(return (rewrite_fundef_body fd2 l pc (Ubx.instr.IOpInl opinl)))
(take (Suc pc) ?instrs') [] (map typeof (OpDyn x # drop ar Σ2))"
using rel_stacktraces_Cons step_op_inl.hyps
by (auto simp add: take_Suc_conv_app_nth Subx.Fenv.map_option_comp_map_entry
map_eq_append_map_drop ap_map_list_cast_Dyn_map_typeof_replicate_conv
Sinca.ℑ𝔫𝔩_invertible
intro!: sp_instrs_prefix' Subx.sp_instr.OpInl
dest!: next_instrD instr_atD)
qed (insert all_dyn_R2 R1_def, simp_all add: drop_map)
qed
qed
next
case (step_op_inl_hit opinl ar Σ2' x)
let ?st1' = "Frame f l (Suc pc) R1 (x # drop ar (map Subx.norm_unboxed Σ2)) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_op_inl_hit.hyps
by (auto simp: take_map ap_map_list_cast_Dyn_to_map_norm[symmetric]
intro!: Sinca.step_op_inl_hit dest!: next_instr2)
next
show "?MATCH ?s1' (State F2 H ?st2')"
using step_op_inl_hit.prems rel_F1_F2
proof (rule match.intros)
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_op_inl_hit.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth drop_map map_eq_append_map_drop
simp: ap_map_list_cast_Dyn_map_typeof_replicate_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.OpInl
dest!: next_instrD instr_atD)
qed
qed
next
case (step_op_inl_miss opinl ar Σ2' x F2')
let ?F1' = "Sinca.Fenv.map_entry F1 f (λfd. rewrite_fundef_body fd l pc (Inca.IOp (𝔇𝔢ℑ𝔫𝔩 opinl)))"
let ?st1' = "Frame f l (Suc pc) R1 (x # drop ar (map Subx.norm_unboxed Σ2)) # st1"
let ?s1' = "State ?F1' H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2' H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_op_inl_miss.hyps
by (auto simp: take_map ap_map_list_cast_Dyn_to_map_norm[symmetric]
intro!: Sinca.step_op_inl_miss dest!: next_instr2)
next
show "?MATCH ?s1' (State F2' H ?st2')"
using step_op_inl_miss.prems
proof (rule match.intros)
show "rel_fundefs (Finca_get ?F1') (Fubx_get F2')"
unfolding step_op_inl_miss.hyps
using rel_F1_F2
by (auto intro: rel_fundefs_rewriteI)
next
let ?fd2' = "rewrite_fundef_body fd2 l pc (Ubx.instr.IOp (𝔇𝔢ℑ𝔫𝔩 opinl))"
let ?instrs' = "instrs[pc := Ubx.instr.IOp (𝔇𝔢ℑ𝔫𝔩 opinl)]"
show "rel_stacktraces (Fubx_get F2') None ?st1' ?st2'"
proof (rule rel_stacktraces.intros)
show "rel_stacktraces (Fubx_get F2') (Some f) st1 st2"
using step_op_inl_miss.hyps rel_st1_st2 Sinca.ℑ𝔫𝔩_invertible
by (auto intro: rel_stacktraces_map_entry_rewrite_fundef_body
Subx.sp_instr_Op_OpInl_conv[OF refl, symmetric])
next
show "Fubx_get F2' f = Some ?fd2'"
unfolding step_op_inl_miss.hyps
using F2_f by simp
next
show "map_of (body ?fd2') l = Some ?instrs'"
using map_of_fd2_l by simp
next
show "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2')
(return (rewrite_fundef_body fd2 l pc (Ubx.instr.IOp (𝔇𝔢ℑ𝔫𝔩 opinl))))
(take (Suc pc) ?instrs') [] (map typeof (OpDyn x # drop ar Σ2))"
using rel_stacktraces_Cons step_op_inl_miss.hyps
by (auto simp add: take_Suc_conv_app_nth Subx.Fenv.map_option_comp_map_entry
map_eq_append_map_drop ap_map_list_cast_Dyn_map_typeof_replicate_conv
Sinca.ℑ𝔫𝔩_invertible
intro!: sp_instrs_prefix' Subx.sp_instr.Op
dest!: next_instrD instr_atD)
qed (insert all_dyn_R2 R1_def, simp_all add: drop_map)
qed
qed
next
case (step_op_ubx opubx op ar x)
let ?st1' = "Frame f l (Suc pc) R1 (Subx.norm_unboxed x # drop ar (map Subx.norm_unboxed Σ2)) # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_op_ubx.hyps
by (auto simp: take_map
intro!: Sinca.step_op_inl_hit
intro: Subx.𝔘𝔟𝔵𝔒𝔭_to_ℑ𝔫𝔩[THEN Sinca.ℑ𝔫𝔩_ℑ𝔰ℑ𝔫𝔩] Subx.𝔘𝔟𝔵𝔒𝔭_correct
dest: next_instr2)
next
show "?MATCH ?s1' (State F2 H ?st2')"
using step_op_ubx.prems rel_F1_F2
proof (rule match.intros)
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_op_ubx.hyps rel_stacktraces_Cons
by (auto simp: take_Suc_conv_app_nth drop_map map_eq_append_map_drop
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.OpUbx
dest!: next_instrD instr_atD
dest!: Subx.𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭_complete)
qed
qed
next
case (step_cjump l⇩t l⇩f x d l' Σ2')
hence "instr_at fd2 l pc = Some (Ubx.instr.ICJump l⇩t l⇩f)"
using F2_f by (auto dest!: next_instrD)
hence pc_in_dom: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = Ubx.instr.ICJump l⇩t l⇩f"
using map_of_fd2_l by (auto dest!: instr_atD)
hence "{l⇩t, l⇩f} ⊆ fst ` set (body fd2)"
using all_jumps_in_range by (auto simp: list_all_length)
moreover have "l' ∈ {l⇩t, l⇩f}"
using step_cjump.hyps by auto
ultimately have "l' ∈ fst ` set (body fd2)"
by blast
then obtain instrs' where map_of_l': "map_of (body fd2) l' = Some instrs'"
by (auto dest: weak_map_of_SomeI)
have pc_def: "pc = length instrs - 1"
using is_jump_nthD[OF _ pc_in_dom] nth_instrs_pc by simp
have Σ2'_eq_Nil: "Σ2' = []"
using sp_instr_last[OF pc_def] step_cjump.hyps
by (auto simp: nth_instrs_pc elim!: Subx.sp_instr.cases)
let ?st1' = "Frame f l' 0 R1 (map Subx.norm_unboxed Σ2') # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_cjump.hyps
by (auto intro!: Sinca.step_cjump dest: next_instr2)
next
show "?MATCH ?s1' (State F2 H ?st2')"
using step_cjump.prems rel_F1_F2
proof (rule match.intros)
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using map_of_l' rel_stacktraces_Cons(1,3-5)
by (auto simp: Σ2'_eq_Nil intro!: rel_stacktraces.intros intro: Subx.sp_instrs.Nil)
qed
qed
next
case (step_call g gd2 frame⇩g)
then obtain gd1 where
F1_g: "Finca_get F1 g = Some gd1" and rel_gd1_gd2: "rel_fundef (=) norm_eq gd1 gd2"
using rel_fundefs_Some2[OF rel_F1_F2] by auto
have wf_gd2: "Subx.wf_fundef (map_option funtype ∘ Fubx_get F2) gd2"
using Subx.wf_fundefs_getD[OF wf_F2] step_call.hyps by simp
obtain intrs⇩g where gd2_fst_bblock: "map_of (body gd2) (fst (hd (body gd2))) = Some intrs⇩g"
using Subx.wf_fundef_body_neq_NilD[OF wf_gd2]
by (metis hd_in_set map_of_eq_None_iff not_Some_eq prod.collapse prod_in_set_fst_image_conv)
let ?frame⇩g = "allocate_frame g gd1 (take (arity gd1) Σ1) uninitialized"
let ?st1' = "?frame⇩g # Frame f l pc R1 Σ1 # st1"
let ?s1' = "State F1 H ?st1'"
show ?case (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding Σ1_def
using step_call.hyps F1_g rel_gd1_gd2
by (auto simp: rel_fundef_arities intro!: Sinca.step_call dest: next_instr2)
next
show "?MATCH ?s1' (State F2 H ?st2')"
using step_call.prems rel_F1_F2
proof (rule match.intros)
have FOO: "fst (hd (body gd1)) = fst (hd (body gd2))"
apply (rule rel_fundef_rel_fst_hd_bodies[OF rel_gd1_gd2])
using Subx.wf_fundefs_getD[OF wf_F2 ‹Fubx_get F2 g = Some gd2›]
by (auto dest: Subx.wf_fundef_body_neq_NilD)
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
unfolding step_call allocate_frame_def FOO
proof (rule rel_stacktraces.intros(2))
show "rel_stacktraces (Fubx_get F2) (Some g)
(Frame f l pc R1 Σ1 # st1) (Frame f l pc R2 Σ2 # st2)"
using step_call rel_stacktraces_Cons
by (auto simp: is_valid_fun_call_def intro: rel_stacktraces.intros)
next
show "take (arity gd1) Σ1 @ replicate (fundef_locals gd1) uninitialized =
map Subx.norm_unboxed (take (arity gd2) Σ2 @
replicate (fundef_locals gd2) (OpDyn uninitialized))"
using rel_gd1_gd2
by (simp add: rel_fundef_arities rel_fundef_locals take_map Σ1_def)
next
show "list_all is_dyn_operand (take (arity gd2) Σ2 @
replicate (fundef_locals gd2) (OpDyn uninitialized))"
using step_call.hyps by auto
qed (insert step_call gd2_fst_bblock, simp_all add: Subx.sp_instrs.Nil)
qed
qed
next
case (step_return fd2' Σ2⇩g frame⇩g' g l⇩g pc⇩g R2⇩g st2')
hence fd2_fd2'[simp]: "fd2' = fd2"
using F2_f by simp
then obtain fd1 where
F1_f: "Finca_get F1 f = Some fd1" and rel_fd1_fd2: "rel_fundef (=) norm_eq fd1 fd2"
using F2_f rel_fundefs_Some2[OF rel_F1_F2] by auto
show ?case
using rel_st1_st2 unfolding ‹Frame g l⇩g pc⇩g R2⇩g Σ2⇩g # st2' = st2›[symmetric]
proof (cases rule: rel_stacktraces.cases)
case (rel_stacktraces_Cons st1' Σ1⇩g R1⇩g gd2 instrs)
hence is_valid_call_f: "is_valid_fun_call (Fubx_get F2) g l⇩g pc⇩g Σ2⇩g f"
by simp
let ?s1' = "State F1 H (Frame g l⇩g (Suc pc⇩g) R1⇩g (Σ1 @ drop (arity fd2) Σ1⇩g) # st1')"
show ?thesis (is "∃x. ?STEP x ∧ ?MATCH x (State F2 H ?st2')")
proof (intro exI conjI)
show "?STEP ?s1'"
unfolding rel_stacktraces_Cons
proof (rule Sinca.step.step_return)
show "next_instr (Finca_get F1) f l pc = Some Inca.instr.IReturn"
using ‹next_instr (Fubx_get F2) f l pc = Some Ubx.instr.IReturn›
using rel_fundefs_next_instr2[OF rel_F1_F2]
by force
next
show "Finca_get F1 f = Some fd1"
by (rule F1_f)
qed (insert step_return.hyps rel_fd1_fd2,
simp_all add: Σ1_def rel_fundef_arities rel_fundef_return)
next
show "?MATCH ?s1' (State F2 H ?st2')"
unfolding step_return.hyps
proof (rule match.intros)
have "next_instr (Fubx_get F2) g l⇩g pc⇩g = Some (Ubx.instr.ICall f)" and
"arity fd2 ≤ length Σ2⇩g" and "list_all is_dyn_operand (take (arity fd2) Σ2⇩g)"
using is_valid_call_f[unfolded is_valid_fun_call_def] F2_f
by simp_all
hence
pc⇩g_in_range: "pc⇩g < length instrs" and
nth_instrs_pc⇩g: "instrs ! pc⇩g = Ubx.instr.ICall f"
using rel_stacktraces_Cons
by (auto dest!: next_instrD instr_atD)
have replicate_None: "replicate (arity fd2) None = map typeof (take (arity fd2) Σ2⇩g)"
using ‹arity fd2 ≤ length Σ2⇩g› ‹list_all is_dyn_operand (take (arity fd2) Σ2⇩g)›
by (auto simp: is_dyn_operand_eq_typeof list_all_iff intro!: replicate_eq_map)
show "rel_stacktraces (Fubx_get F2) None
(Frame g l⇩g (Suc pc⇩g) R1⇩g (Σ1 @ drop (arity fd2) Σ1⇩g) # st1')
(Frame g l⇩g (Suc pc⇩g) R2⇩g (Σ2 @ drop (arity fd2') Σ2⇩g) # st2')"
using rel_stacktraces_Cons
apply (auto simp: Σ1_def drop_map take_Suc_conv_app_nth[OF pc⇩g_in_range] nth_instrs_pc⇩g
intro!: rel_stacktraces.intros elim!: Subx.sp_instrs_appendI)
apply (rule Subx.sp_instr.Call[of _ _ _ _ _ "map typeof (drop (arity fd2) Σ2⇩g)"])
apply (simp add: F2_f funtype_def)
apply (simp add: replicate_None map_append[symmetric])
using ‹length Σ2 = return fd2'› ‹list_all is_dyn_operand Σ2›
by (auto simp: list.pred_set intro: replicate_eq_map[symmetric])
qed (insert step_return rel_F1_F2, simp_all)
qed
qed
qed
qed
qed
lemma match_final_backward:
assumes "match s1 s2" and final_s2: "final Fubx_get Ubx.IReturn s2"
shows "final Finca_get Inca.IReturn s1"
using ‹match s1 s2›
proof (cases s1 s2 rule: match.cases)
case (matchI F2 H st2 F1 st1)
show ?thesis
using final_s2[unfolded matchI]
proof (cases _ _ "State F2 H st2" rule: final.cases)
case (finalI f l pc R Σ)
then show ?thesis
using matchI
by (auto intro!: final.intros elim!: rel_stacktraces.cases dest: rel_fundefs_next_instr2)
qed
qed
sublocale inca_to_ubx_simulation: backward_simulation where
step1 = Sinca.step and final1 = "final Finca_get Inca.IReturn" and
step2 = Subx.step and final2 = "final Fubx_get Ubx.IReturn" and
match = "λ_. match" and order = "λ_ _. False"
using match_final_backward backward_lockstep_simulation
lockstep_to_plus_backward_simulation[of match Subx.step Sinca.step]
by unfold_locales auto
section ‹Forward simulation›
lemma ap_map_list_cast_Dyn_eq_norm_stack:
assumes "list_all (λx. x = None) (map typeof xs)"
shows "ap_map_list cast_Dyn xs = Some (map Subx.norm_unboxed xs)"
using assms
proof (induction xs)
case Nil
thus ?case by simp
next
case (Cons x xs)
from Cons.prems have
typeof_x: "typeof x = None" and
typeof_xs: "list_all (λx. x = None) (map typeof xs)"
by simp_all
obtain x' where "x = OpDyn x'"
using typeof_unboxed_inversion(1)[OF typeof_x] by auto
then show ?case
using Cons.IH[OF typeof_xs]
by simp
qed
lemma forward_lockstep_simulation:
assumes "match s1 s2" and "Sinca.step s1 s1'"
shows "∃s2'. Subx.step s2 s2' ∧ match s1' s2'"
using assms(1)
proof (cases s1 s2 rule: match.cases)
case (matchI F2 H st2 F1 st1)
have s2_def: "s2 = Global.state.State F2 H st2" using matchI by simp
have rel_F1_F2: "rel_fundefs (Finca_get F1) (Fubx_get F2)" using matchI by simp
have wf_s2: "Subx.wf_state s2" using matchI by simp
hence wf_F2: "Subx.wf_fundefs (Fubx_get F2)" by (auto simp: s2_def dest: Subx.wf_stateD)
note wf_s2'I = Subx.wf_state_step_preservation[OF wf_s2]
from ‹rel_stacktraces (Fubx_get F2) None st1 st2› show ?thesis
proof (cases "Fubx_get F2" "None :: 'fun option" st1 st2 rule: rel_stacktraces.cases)
case rel_stacktraces_Nil
with matchI assms(2) show ?thesis by (auto elim: Sinca.step.cases)
next
case (rel_stacktraces_Cons f st1' st2' Σ1 Σ2 R1 R2 fd2 l instrs pc)
have rel_st1'_st2': "rel_stacktraces (Fubx_get F2) (Some f) st1' st2'"
using rel_stacktraces_Cons by simp
have st2_def: "st2 = Frame f l pc R2 Σ2 # st2'" using rel_stacktraces_Cons by simp
have Σ1_def: "Σ1 = map Subx.norm_unboxed Σ2" using rel_stacktraces_Cons by simp
have all_dyn_R2: "list_all is_dyn_operand R2" using rel_stacktraces_Cons by simp
have F2_f: "Fubx_get F2 f = Some fd2" using rel_stacktraces_Cons by simp
have map_of_fd2_l: "map_of (body fd2) l = Some instrs" using rel_stacktraces_Cons by simp
have sp_instrs_prefix: "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2)
(take pc instrs) [] (map typeof Σ2)"
using rel_stacktraces_Cons by simp
note sp_instrs_prefix' =
Subx.sp_instrs_singletonI[THEN Subx.sp_instrs_appendI[OF sp_instrs_prefix]]
have wf_fd2: "Subx.wf_fundef (map_option funtype ∘ Fubx_get F2) fd2"
using wf_F2 F2_f by (auto dest: Subx.wf_fundefs_getD)
hence sp_instrs_instrs:
"Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2) instrs [] []"
using wf_fd2[THEN Subx.wf_fundef_all_wf_basic_blockD] map_of_fd2_l
by (auto dest: list_all_map_of_SomeD[OF _ map_of_fd2_l] dest: Subx.wf_basic_blockD)
hence sp_instrs_sufix: "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2)
(instrs ! pc # drop (Suc pc) instrs) (map typeof Σ2) []" if "pc < length instrs"
using that Subx.sp_instrs_appendD'[OF _ sp_instrs_prefix]
by (simp add: Cons_nth_drop_Suc)
have
instrs_neq_Nil: "instrs ≠ []" and
all_jumps_in_range: "list_all (Subx.jump_in_range (fst ` set (body fd2))) instrs" and
sp_instrs_instrs: "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2) instrs [] []"
using list_all_map_of_SomeD[OF wf_fd2[THEN Subx.wf_fundef_all_wf_basic_blockD] map_of_fd2_l]
by (auto dest: Subx.wf_basic_blockD)
from assms(2)[unfolded matchI rel_stacktraces_Cons] show ?thesis
proof (induction "State F1 H (Frame f l pc (map Subx.norm_unboxed R2) (map Subx.norm_unboxed Σ2) # st1')" s1' rule: Sinca.step.induct)
case (step_push d)
then obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.IPush d) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
then show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case (IPush d2)
let ?st2' = "Frame f l (Suc pc) R2 (OpDyn d # Σ2) # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using next_instr2 norm_eq_instr1_instr2
unfolding IPush
by (auto simp: s2_def st2_def intro: Subx.step_push)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
unfolding IPush
by (auto simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' intro: Subx.sp_instr.Push)
qed (simp_all add: rel_F1_F2)
qed
next
case (IPushUbx1 u)
let ?st2' = "Frame f l (Suc pc) R2 (OpUbx1 u # Σ2) # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using next_instr2 norm_eq_instr1_instr2
unfolding IPushUbx1
by (auto simp: s2_def st2_def intro: Subx.step_push_ubx1)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 norm_eq_instr1_instr2 rel_stacktraces_Cons
unfolding IPushUbx1
by (auto simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' intro: Subx.sp_instr.PushUbx1)
qed (simp_all add: rel_F1_F2)
qed
next
case (IPushUbx2 u)
let ?st2' = "Frame f l (Suc pc) R2 (OpUbx2 u # Σ2) # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using next_instr2 norm_eq_instr1_instr2
unfolding IPushUbx2
by (auto simp: s2_def st2_def intro: Subx.step_push_ubx2)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 norm_eq_instr1_instr2 rel_stacktraces_Cons
unfolding IPushUbx2
by (auto simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' intro: Subx.sp_instr.PushUbx2)
qed (simp_all add: rel_F1_F2)
qed
qed simp_all
next
case (step_pop d Σ1')
then obtain u Σ2' where
Σ2_def: "Σ2 = u # Σ2'" and "d = Subx.norm_unboxed u" and
Σ1'_def: "Σ1' = map Subx.norm_unboxed Σ2'"
by auto
from step_pop obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq Inca.IPop instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
then show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case IPop
let ?st2' = "Frame f l (Suc pc) R2 Σ2' # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using next_instr2 norm_eq_instr1_instr2
unfolding IPop
by (auto simp: s2_def st2_def Σ2_def intro: Subx.step_pop)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
unfolding IPop
by (auto simp: Σ2_def Σ1'_def next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Pop)
qed (simp_all add: rel_F1_F2)
qed
qed simp_all
next
case (step_get n d)
hence nth_R2_n: "R2 ! n = OpDyn d"
using all_dyn_R2
by (metis Subx.norm_unboxed.simps(1) is_dyn_operand_def length_map list_all_length nth_map)
from step_get obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.IGet n) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
then show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case (IGet n')
hence "n' = n" using norm_eq_instr1_instr2 by simp
let ?st2' = "Frame f l (Suc pc) R2 (OpDyn d # Σ2) # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_get nth_R2_n
using next_instr2 norm_eq_instr1_instr2
unfolding IGet
by (auto simp: s2_def st2_def intro: Subx.step_get)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
unfolding IGet
by (auto simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' intro: Subx.sp_instr.Get)
qed (simp_all add: rel_F1_F2)
qed
next
case (IGetUbx τ n')
hence "n' = n" using norm_eq_instr1_instr2 by simp
show ?thesis
proof (cases "Subx.unbox τ d")
case None
let ?F2' = "Subx.Fenv.map_entry F2 f Subx.generalize_fundef"
let ?st2' = "Subx.box_stack f (Frame f l (Suc pc) R2 (OpDyn d # Σ2) # st2')"
let ?s2' = "State ?F2' H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_get nth_R2_n None
using next_instr2 norm_eq_instr1_instr2
unfolding IGetUbx
by (auto simp: s2_def st2_def intro: Subx.step_get_ubx_miss[simplified])
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2
by (auto intro!: Subx.wf_stateI intro: Subx.wf_fundefs_generalize)
next
show "rel_fundefs (Finca_get F1) (Fubx_get ?F2')"
using rel_F1_F2
by (auto intro: rel_fundefs_generalizeI)
next
have sp_instrs_gen: "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2)
(take (Suc pc) (map Subx.generalize_instr instrs)) [] (map Map.empty (OpDyn d # Σ2))"
using rel_stacktraces_Cons step_get.hyps
using IGetUbx ‹n' = n›
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by (auto simp: take_Suc_conv_app_nth take_map
intro!: Subx.sp_instrs_appendI
intro: Subx.sp_instrs_generalize0 Subx.sp_instr.Get)
then show "rel_stacktraces (Fubx_get ?F2') None ?st1' ?st2'"
apply simp
proof (rule rel_stacktraces.intros)
show "rel_stacktraces (Fubx_get ?F2') (Some f) st1' (Subx.box_stack f st2')"
using rel_st1'_st2' rel_stacktraces_map_entry_gneralize_fundefI by simp
next
show "Fubx_get ?F2' f = Some (Subx.generalize_fundef fd2)"
using F2_f by simp
next
show "map_of (body (Subx.generalize_fundef fd2)) l =
Some (map Subx.generalize_instr instrs)"
using map_of_fd2_l by (simp add: Subx.map_of_generalize_fundef_conv)
qed (insert all_dyn_R2 map_of_fd2_l, simp_all add: Subx.map_of_generalize_fundef_conv)
qed
qed
next
case (Some u)
let ?st2' = "Frame f l (Suc pc) R2 (u # Σ2) # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_get nth_R2_n Some
using next_instr2 norm_eq_instr1_instr2
unfolding IGetUbx
by (auto simp: s2_def st2_def intro: Subx.step_get_ubx_hit)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
using Some
unfolding IGetUbx
by (auto simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' intro: Subx.sp_instr.GetUbx)
qed (simp_all add: rel_F1_F2)
qed
qed
qed simp_all
next
case (step_set n R1' d Σ1')
then obtain u Σ2' where
Σ2_def: "Σ2 = u # Σ2'" and d_def: "d = Subx.norm_unboxed u" and
Σ1'_def: "Σ1' = map Subx.norm_unboxed Σ2'"
by auto
from step_set obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.ISet n) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from next_instr2 norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case (ISet n')
hence "n' = n" using norm_eq_instr1_instr2 by simp
have typeof_u: "typeof u = None"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc ISet, simplified]
by (auto simp: Σ2_def elim: Subx.sp_instrs.cases Subx.sp_instr.cases)
hence cast_Dyn_u: "cast_Dyn u = Some d"
by (auto simp add: d_def dest: Subx.typeof_and_norm_unboxed_imp_cast_Dyn)
let ?R2' = "R2[n := OpDyn d]"
let ?st2' = "Frame f l (Suc pc) ?R2' Σ2' # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_set.hyps cast_Dyn_u
using next_instr2 norm_eq_instr1_instr2
unfolding ISet
by (auto simp: s2_def st2_def Σ2_def intro: Subx.step_set)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
unfolding ISet
using step_set.hyps cast_Dyn_u
by (auto simp: Σ1'_def Σ2_def map_update next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Set
intro: list_all_list_updateI)
qed (simp_all add: rel_F1_F2)
qed
next
case (ISetUbx τ n')
hence "n' = n" using norm_eq_instr1_instr2 by simp
have typeof_u: "typeof u = Some τ"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc ISetUbx, simplified]
by (auto simp: Σ2_def elim: Subx.sp_instrs.cases Subx.sp_instr.cases)
hence cast_and_box_u: "Subx.cast_and_box τ u = Some d"
by (auto simp add: d_def dest: Subx.typeof_and_norm_unboxed_imp_cast_and_box)
let ?R2' = "R2[n := OpDyn d]"
let ?st2' = "Frame f l (Suc pc) ?R2' Σ2' # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_set cast_and_box_u
using next_instr2 norm_eq_instr1_instr2
unfolding ISetUbx
by (auto simp: s2_def st2_def Σ2_def intro: Subx.step_set_ubx)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
unfolding ISetUbx
using step_set.hyps cast_and_box_u
by (auto simp: Σ1'_def Σ2_def map_update next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.SetUbx
intro: list_all_list_updateI)
qed (simp_all add: rel_F1_F2)
qed
qed simp_all
next
case (step_load x y d Σ1')
then obtain u Σ2' where
Σ2_def: "Σ2 = u # Σ2'" and d_def: "y = Subx.norm_unboxed u" and
Σ1'_def: "Σ1' = map Subx.norm_unboxed Σ2'"
by auto
from step_load obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.ILoad x) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from next_instr2 norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case (ILoad x')
hence "x' = x" using norm_eq_instr1_instr2 by simp
have typeof_u: "typeof u = None"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc ILoad, simplified]
by (auto simp: Σ2_def elim: Subx.sp_instrs.cases Subx.sp_instr.cases)
hence cast_Dyn_u: "cast_Dyn u = Some y"
by (auto simp add: d_def dest: Subx.typeof_and_norm_unboxed_imp_cast_Dyn)
let ?st2' = "Frame f l (Suc pc) R2 (OpDyn d # Σ2') # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_load.hyps cast_Dyn_u next_instr2
unfolding ILoad ‹x' = x›
by (auto simp: s2_def st2_def Σ2_def intro: Subx.step_load)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
unfolding ILoad ‹x' = x›
using step_load.hyps cast_Dyn_u
by (auto simp: Σ1'_def Σ2_def map_update next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Load
intro: list_all_list_updateI)
qed (simp_all add: rel_F1_F2)
qed
next
case (ILoadUbx τ x')
hence "x' = x" using norm_eq_instr1_instr2 by simp
have typeof_u: "typeof u = None"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc ILoadUbx, simplified]
by (auto simp: Σ2_def elim: Subx.sp_instrs.cases Subx.sp_instr.cases)
hence cast_Dyn_u: "cast_Dyn u = Some y"
by (auto simp add: d_def dest: Subx.typeof_and_norm_unboxed_imp_cast_Dyn)
show ?thesis
proof (cases "Subx.unbox τ d")
case None
let ?F2' = "Subx.Fenv.map_entry F2 f Subx.generalize_fundef"
let ?st2' = "Subx.box_stack f (Frame f l (Suc pc) R2 (OpDyn d # Σ2') # st2')"
let ?s2' = "State ?F2' H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_load.hyps next_instr2 cast_Dyn_u None
unfolding ILoadUbx ‹x' = x›
by (auto simp add: s2_def st2_def Σ2_def intro: Subx.step_load_ubx_miss[simplified])
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2
by (auto intro!: Subx.wf_stateI intro: Subx.wf_fundefs_generalize)
next
show "rel_fundefs (Finca_get F1) (Fubx_get ?F2')"
using rel_F1_F2
by (auto intro: rel_fundefs_generalizeI)
next
have "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2)
(take (Suc pc) (map Subx.generalize_instr instrs)) [] (None # map Map.empty Σ2')"
using rel_stacktraces_Cons step_load.hyps
using pc_in_range nth_instrs_pc
using ILoadUbx ‹x' = x›
by (auto simp: Σ2_def take_Suc_conv_app_nth take_map
intro!: Subx.sp_instrs_appendI
intro: Subx.sp_instrs_generalize0 Subx.sp_instr.Load)
thus "rel_stacktraces (Fubx_get ?F2') None ?st1' ?st2'"
apply simp
proof (rule rel_stacktraces.intros)
show "Fubx_get ?F2' f = Some (Subx.generalize_fundef fd2)"
using F2_f by simp
next
show "map_of (body (Subx.generalize_fundef fd2)) l =
Some (map Subx.generalize_instr instrs)"
using map_of_fd2_l
by (simp add: Subx.map_of_generalize_fundef_conv)
qed (insert rel_F1_F2 all_dyn_R2 F2_f map_of_fd2_l rel_st1'_st2', auto simp: Σ1'_def)
qed
qed
next
case (Some u2)
let ?st2' = "Frame f l (Suc pc) R2 (u2 # Σ2') # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_load.hyps next_instr2 cast_Dyn_u Some
unfolding ILoadUbx ‹x' = x›
by (auto simp add: s2_def st2_def Σ2_def intro: Subx.step_load_ubx_hit[simplified])
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2
by (auto intro!: Subx.wf_stateI intro: Subx.wf_fundefs_generalize)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
using Some typeof_u
unfolding ILoadUbx
by (auto simp: Σ2_def Σ1'_def next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.LoadUbx)
qed (insert rel_F1_F2, simp_all)
qed
qed
qed simp_all
next
case (step_store x d1 d2 H' Σ1')
then obtain u1 u2 Σ2' where
Σ2_def: "Σ2 = u1 # u2 # Σ2'" and
d1_def: "d1 = Subx.norm_unboxed u1" and
d2_def: "d2 = Subx.norm_unboxed u2" and
Σ1'_def: "Σ1' = map Subx.norm_unboxed Σ2'"
by auto
from step_store obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.instr.IStore x) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from next_instr2 norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H' ?st1') x")
proof (cases instr2)
case (IStore x')
hence "x' = x" using norm_eq_instr1_instr2 by simp
have casts: "cast_Dyn u1 = Some d1" "cast_Dyn u2 = Some d2"
unfolding atomize_conj
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IStore, simplified]
by (auto simp: d1_def d2_def Σ2_def elim: Subx.sp_instrs.cases Subx.sp_instr.cases
intro: Subx.typeof_and_norm_unboxed_imp_cast_Dyn)
let ?st2' = "Frame f l (Suc pc) R2 Σ2' # st2'"
let ?s2' = "State F2 H' ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_store.hyps casts next_instr2
unfolding IStore ‹x' = x›
by (auto simp: s2_def st2_def Σ2_def intro: Subx.step_store)
next
show "?MATCH (State F1 H' ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
unfolding IStore ‹x' = x›
using step_store.hyps casts
by (auto simp: Σ1'_def Σ2_def map_update next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Store
intro: list_all_list_updateI)
qed (insert rel_F1_F2, simp_all)
qed
next
case (IStoreUbx τ x')
hence "x' = x" using norm_eq_instr1_instr2 by simp
have casts: "cast_Dyn u1 = Some d1" "Subx.cast_and_box τ u2 = Some d2"
unfolding atomize_conj
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IStoreUbx, simplified]
by (auto simp: d1_def d2_def Σ2_def elim: Subx.sp_instrs.cases Subx.sp_instr.cases
intro: Subx.typeof_and_norm_unboxed_imp_cast_Dyn
intro: Subx.typeof_and_norm_unboxed_imp_cast_and_box)
let ?st2' = "Frame f l (Suc pc) R2 Σ2' # st2'"
let ?s2' = "State F2 H' ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_store.hyps casts next_instr2
unfolding IStoreUbx ‹x' = x›
by (auto simp: s2_def st2_def Σ2_def intro: Subx.step_store_ubx)
next
show "?MATCH (State F1 H' ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using next_instr2 rel_stacktraces_Cons
unfolding IStoreUbx ‹x' = x›
using step_store.hyps casts
by (auto simp: Σ1'_def Σ2_def map_update next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.StoreUbx
intro: list_all_list_updateI)
qed (insert rel_F1_F2, simp_all)
qed
qed simp_all
next
case (step_op op ar x)
then obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.IOp op) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from next_instr2 norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case (IOp op')
hence "op' = op" using norm_eq_instr1_instr2 by simp
have casts:
"ap_map_list cast_Dyn (take ar Σ2) = Some (take ar (map Subx.norm_unboxed Σ2))"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IOp, simplified]
using step_op.hyps
by (auto simp: ‹op' = op› take_map
elim!: Subx.sp_instrs.cases[of _ _ "x # xs" for x xs, simplified] Subx.sp_instr.cases
intro!: ap_map_list_cast_Dyn_eq_norm_stack[of "take (𝔄𝔯𝔦𝔱𝔶 op) Σ2"]
dest!: map_eq_append_replicate_conv)
let ?st2' = "Frame f l (Suc pc) R2 (OpDyn x # drop ar Σ2) # st2'"
let ?s2' = "State F2 H ?st2'"
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'"
using step_op.hyps casts next_instr2
unfolding IOp ‹op' = op›
by (auto simp: s2_def st2_def intro: Subx.step_op)
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
using wf_F2 by (auto intro: Subx.wf_stateI)
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_op.hyps casts next_instr2 rel_stacktraces_Cons
unfolding IOp ‹op' = op›
by (auto simp: min_absorb2 take_map[symmetric] drop_map[symmetric]
simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.Op
intro: list_all_list_updateI
dest!: ap_map_list_cast_Dyn_replicate[symmetric])
qed (insert rel_F1_F2, simp_all)
qed
qed simp_all
next
case (step_op_inl op ar opinl x F1')
then obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.IOp op) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from next_instr2 norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1' H ?st1') x")
proof (cases instr2)
case (IOp op')
hence "op' = op" using norm_eq_instr1_instr2 by simp
have casts:
"ap_map_list cast_Dyn (take ar Σ2) = Some (take ar (map Subx.norm_unboxed Σ2))"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IOp, simplified]
using step_op_inl.hyps
by (auto simp: ‹op' = op› take_map
elim!: Subx.sp_instrs.cases[of _ _ "x # xs" for x xs, simplified] Subx.sp_instr.cases
intro!: ap_map_list_cast_Dyn_eq_norm_stack[of "take (𝔄𝔯𝔦𝔱𝔶 op) Σ2"]
dest!: map_eq_append_replicate_conv)
let ?st2' = "Frame f l (Suc pc) R2 (OpDyn x # drop ar Σ2) # st2'"
let ?F2' = "Subx.Fenv.map_entry F2 f (λfd. rewrite_fundef_body fd l pc (Ubx.IOpInl opinl))"
let ?s2' = "State ?F2' H ?st2'"
have step_s2_s2': "?STEP ?s2'"
using step_op_inl.hyps casts next_instr2
unfolding IOp ‹op' = op›
by (auto simp: s2_def st2_def intro: Subx.step_op_inl)
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'" by (rule step_s2_s2')
next
show "?MATCH (State F1' H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
by (rule Subx.wf_state_step_preservation[OF wf_s2 step_s2_s2'])
next
show "rel_fundefs (Finca_get F1') (Fubx_get ?F2')"
using rel_F1_F2 step_op_inl
by (auto intro: rel_fundefs_rewriteI)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using rel_st1'_st2'
apply (rule rel_stacktraces.intros)
using step_op_inl.hyps casts next_instr2 rel_stacktraces_Cons
unfolding IOp ‹op' = op›
by (auto simp: min_absorb2 take_map[symmetric] drop_map[symmetric]
simp: next_instr_take_Suc_conv
intro!: sp_instrs_prefix' Subx.sp_instr.Op
dest!: ap_map_list_cast_Dyn_replicate[symmetric])
then show "rel_stacktraces (Fubx_get ?F2') None ?st1' ?st2'"
apply (rule rel_stacktraces_map_entry_rewrite_fundef_body)
apply (rule next_instr2)
unfolding IOp ‹op' = op›
using Sinca.ℑ𝔫𝔩_invertible Subx.sp_instr_Op_OpInl_conv step_op_inl.hyps(4) apply blast
apply simp
apply simp
done
qed
qed
qed simp_all
next
case (step_op_inl_hit opinl ar x)
then obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.IOpInl opinl) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from next_instr2 norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case (IOpInl opinl')
hence "opinl' = opinl" using norm_eq_instr1_instr2 by simp
have casts:
"ap_map_list cast_Dyn (take ar Σ2) = Some (take ar (map Subx.norm_unboxed Σ2))"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IOpInl, simplified]
using step_op_inl_hit.hyps
by (auto simp: ‹opinl' = opinl› take_map
elim!: Subx.sp_instrs.cases[of _ _ "x # xs" for x xs, simplified] Subx.sp_instr.cases
intro!: ap_map_list_cast_Dyn_eq_norm_stack[of "take (𝔄𝔯𝔦𝔱𝔶 (𝔇𝔢ℑ𝔫𝔩 opinl)) Σ2"]
dest!: map_eq_append_replicate_conv)
let ?st2' = "Frame f l (Suc pc) R2 (OpDyn x # drop ar Σ2) # st2'"
let ?s2' = "State F2 H ?st2'"
have step_s2_s2': "?STEP ?s2'"
using step_op_inl_hit.hyps casts next_instr2
unfolding IOpInl ‹opinl' = opinl›
by (auto simp: s2_def st2_def intro: Subx.step_op_inl_hit)
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'" by (rule step_s2_s2')
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
by (rule Subx.wf_state_step_preservation[OF wf_s2 step_s2_s2'])
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_op_inl_hit.hyps casts next_instr2 rel_stacktraces_Cons
unfolding IOpInl ‹opinl' = opinl›
by (auto simp: min_absorb2 take_map[symmetric] drop_map[symmetric]
simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.OpInl
intro: list_all_list_updateI
dest!: ap_map_list_cast_Dyn_replicate[symmetric])
qed (insert rel_F1_F2, simp_all)
qed
next
case (IOpUbx opubx)
hence "opinl = 𝔅𝔬𝔵 opubx" using norm_eq_instr1_instr2 by simp
let ?ar = "𝔄𝔯𝔦𝔱𝔶 (𝔇𝔢ℑ𝔫𝔩 (𝔅𝔬𝔵 opubx))"
obtain codom where typeof_opubx: "𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭 opubx = (map typeof (take ?ar Σ2), codom)"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IOpUbx, simplified]
by (cases "𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭 opubx")
(auto simp: eq_append_conv_conj Subx.𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭_𝔄𝔯𝔦𝔱𝔶 take_map
dest!: Subx.sp_instrs_ConsD elim!: Subx.sp_instr.cases)
obtain u where
eval_opubx: "𝔘𝔟𝔵𝔒𝔭 opubx (take ?ar Σ2) = Some u" and typeof_u: "typeof u = codom"
using Subx.𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭_correct[OF typeof_opubx] by auto
hence x_def: "x = Subx.norm_unboxed u"
using step_op_inl_hit.hyps
using Subx.𝔘𝔟𝔵𝔒𝔭_correct[OF eval_opubx]
unfolding ‹opinl = 𝔅𝔬𝔵 opubx› take_map
by simp
let ?st2' = "Frame f l (Suc pc) R2 (u # drop ?ar Σ2) # st2'"
let ?s2' = "State F2 H ?st2'"
have step_s2_s2': "?STEP ?s2'"
using step_op_inl_hit.hyps next_instr2
unfolding IOpUbx ‹opinl = 𝔅𝔬𝔵 opubx›
using eval_opubx
by (auto simp: s2_def st2_def intro!: Subx.step_op_ubx)
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'" by (rule step_s2_s2')
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
by (rule Subx.wf_state_step_preservation[OF wf_s2 step_s2_s2'])
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_op_inl_hit.hyps next_instr2 rel_stacktraces_Cons
unfolding IOpUbx ‹opinl = 𝔅𝔬𝔵 opubx› x_def
by (auto simp: typeof_opubx typeof_u
simp: min_absorb2 take_map[symmetric] drop_map[symmetric]
simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.OpUbx
dest!: ap_map_list_cast_Dyn_replicate[symmetric])
qed (insert rel_F1_F2, simp_all)
qed
qed simp_all
next
case (step_op_inl_miss opinl ar x F1')
then obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.IOpInl opinl) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from next_instr2 norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1' H ?st1') x")
proof (cases instr2)
case (IOpInl opinl')
hence "opinl' = opinl" using norm_eq_instr1_instr2 by simp
have casts:
"ap_map_list cast_Dyn (take ar Σ2) = Some (take ar (map Subx.norm_unboxed Σ2))"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IOpInl, simplified]
using step_op_inl_miss.hyps
by (auto simp: ‹opinl' = opinl› take_map
elim!: Subx.sp_instrs.cases[of _ _ "x # xs" for x xs, simplified] Subx.sp_instr.cases
intro!: ap_map_list_cast_Dyn_eq_norm_stack[of "take (𝔄𝔯𝔦𝔱𝔶 (𝔇𝔢ℑ𝔫𝔩 opinl)) Σ2"]
dest!: map_eq_append_replicate_conv)
let ?st2' = "Frame f l (Suc pc) R2 (OpDyn x # drop ar Σ2) # st2'"
let ?F2' = "Subx.Fenv.map_entry F2 f (λfd. rewrite_fundef_body fd l pc (Ubx.IOp (𝔇𝔢ℑ𝔫𝔩 opinl)))"
let ?s2' = "State ?F2' H ?st2'"
have step_s2_s2': "?STEP ?s2'"
using step_op_inl_miss.hyps casts next_instr2
unfolding IOpInl ‹opinl' = opinl›
by (auto simp: s2_def st2_def intro: Subx.step_op_inl_miss)
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'" by (rule step_s2_s2')
next
show "?MATCH (State F1' H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
by (rule Subx.wf_state_step_preservation[OF wf_s2 step_s2_s2'])
next
show "rel_fundefs (Finca_get F1') (Fubx_get ?F2')"
using rel_F1_F2 step_op_inl_miss.hyps
by (auto intro: rel_fundefs_rewriteI)
next
have "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using rel_st1'_st2'
apply (rule rel_stacktraces.intros)
using step_op_inl_miss.hyps casts next_instr2 rel_stacktraces_Cons
unfolding IOpInl ‹opinl' = opinl›
by (auto simp: min_absorb2 take_map[symmetric] drop_map[symmetric]
simp: next_instr_take_Suc_conv
intro!: sp_instrs_prefix' Subx.sp_instr.OpInl
dest!: ap_map_list_cast_Dyn_replicate[symmetric])
then show "rel_stacktraces (Fubx_get ?F2') None ?st1' ?st2'"
apply (rule rel_stacktraces_map_entry_rewrite_fundef_body)
apply (rule next_instr2)
unfolding IOpInl ‹opinl' = opinl›
using Sinca.ℑ𝔫𝔩_invertible Subx.sp_instr_Op_OpInl_conv step_op_inl_miss.hyps apply metis
apply simp
apply simp
done
qed
qed
next
case (IOpUbx opubx)
hence "opinl = 𝔅𝔬𝔵 opubx" using norm_eq_instr1_instr2 by simp
let ?ar = "𝔄𝔯𝔦𝔱𝔶 (𝔇𝔢ℑ𝔫𝔩 (𝔅𝔬𝔵 opubx))"
obtain codom where typeof_opubx: "𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭 opubx = (map typeof (take ?ar Σ2), codom)"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IOpUbx, simplified]
by (cases "𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭 opubx")
(auto simp: eq_append_conv_conj Subx.𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭_𝔄𝔯𝔦𝔱𝔶 take_map
dest!: Subx.sp_instrs_ConsD elim!: Subx.sp_instr.cases)
obtain u where "𝔘𝔟𝔵𝔒𝔭 opubx (take ?ar Σ2) = Some u"
using Subx.𝔗𝔶𝔭𝔢𝔒𝔣𝔒𝔭_correct[OF typeof_opubx] by auto
hence "ℑ𝔰ℑ𝔫𝔩 opinl (take ?ar Σ1)"
unfolding Σ1_def
by (auto simp: ‹opinl = 𝔅𝔬𝔵 opubx› take_map dest: Subx.𝔘𝔟𝔵𝔒𝔭_to_ℑ𝔫𝔩[THEN Sinca.ℑ𝔫𝔩_ℑ𝔰ℑ𝔫𝔩])
hence False
using step_op_inl_miss.hyps
by (simp add: Σ1_def ‹opinl = 𝔅𝔬𝔵 opubx›)
thus ?thesis by simp
qed simp_all
next
case (step_cjump l⇩t l⇩f d l' Σ1')
then obtain u Σ2' where
Σ2_def: "Σ2 = u # Σ2'" and
d_def: "d = Subx.norm_unboxed u" and
Σ1'_def: "Σ1' = map Subx.norm_unboxed Σ2'"
by auto
from step_cjump.hyps obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.ICJump l⇩t l⇩f) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from next_instr2 norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case (ICJump l⇩t' l⇩f')
hence "l⇩t' = l⇩t" and "l⇩f' = l⇩f" using norm_eq_instr1_instr2 by simp_all
hence "{l⇩t, l⇩f} ⊆ fst ` set (body fd2)"
using all_jumps_in_range pc_in_range nth_instrs_pc ICJump by (auto simp: list_all_length)
moreover have "l' ∈ {l⇩t, l⇩f}"
using step_cjump.hyps by auto
ultimately have "l' ∈ fst ` set (body fd2)"
by blast
then obtain instrs' where map_of_l': "map_of (body fd2) l' = Some instrs'"
by (auto dest: weak_map_of_SomeI)
have sp_instrs_instrs': "Subx.sp_instrs (map_option funtype ∘ Fubx_get F2) (return fd2)
(butlast instrs @ [instrs ! pc]) [] []" if pc_def: "pc = length instrs - 1"
unfolding pc_def last_conv_nth[OF instrs_neq_Nil, symmetric]
unfolding append_butlast_last_id[OF instrs_neq_Nil]
by (rule sp_instrs_instrs)
have sp_instr_last: "Subx.sp_instr (map_option funtype ∘ Fubx_get F2) (return fd2)
(instrs ! pc) (map typeof Σ2) []" if pc_def: "pc = length instrs - 1"
using sp_instrs_instrs'[OF pc_def]
using sp_instrs_prefix[unfolded pc_def butlast_conv_take[symmetric]]
by (auto dest!: Subx.sp_instrs_appendD')
have is_jump_nthD: "⋀n. is_jump (instrs ! n) ⟹ n < length instrs ⟹ n = length instrs - 1"
using list_all_map_of_SomeD[OF wf_fd2[THEN Subx.wf_fundef_all_wf_basic_blockD] map_of_fd2_l]
by (auto dest!: Subx.wf_basic_blockD
list_all_butlast_not_nthD[of "λi. ¬ is_jump i ∧ ¬ Ubx.instr.is_return i", simplified, OF _ disjI1])
have pc_def: "pc = length instrs - 1"
using is_jump_nthD[OF _ pc_in_range] nth_instrs_pc ICJump by simp
have Σ2'_eq_Nil: "Σ2' = []"
using sp_instr_last[OF pc_def] step_cjump.hyps
by (auto simp: Σ2_def d_def nth_instrs_pc ICJump elim!: Subx.sp_instr.cases)
have cast: "cast_Dyn u = Some d"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc ICJump, simplified]
by (auto simp: Σ2_def d_def dest!: Subx.sp_instrs_ConsD elim!: Subx.sp_instr.cases
intro: Subx.typeof_and_norm_unboxed_imp_cast_Dyn)
let ?st2' = "Frame f l' 0 R2 Σ2' # st2'"
let ?s2' = "State F2 H ?st2'"
have step_s2_s2': "?STEP ?s2'"
using step_cjump.hyps cast next_instr2
unfolding ICJump ‹l⇩t' = l⇩t› ‹l⇩f' = l⇩f›
by (auto simp: s2_def st2_def Σ2_def intro!: Subx.step_cjump)
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'" by (rule step_s2_s2')
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
by (rule Subx.wf_state_step_preservation[OF wf_s2 step_s2_s2'])
next
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
using step_cjump.hyps cast next_instr2 rel_stacktraces_Cons
using map_of_l'
unfolding ICJump ‹l⇩t' = l⇩t› ‹l⇩f' = l⇩f› Σ1'_def Σ2'_eq_Nil
by (auto simp: min_absorb2 take_map[symmetric] drop_map[symmetric]
simp: next_instr_take_Suc_conv
intro!: rel_stacktraces.intros sp_instrs_prefix' Subx.sp_instr.CJump
intro: Subx.sp_instrs.Nil
dest!: ap_map_list_cast_Dyn_replicate[symmetric])
qed (insert rel_F1_F2, simp_all)
qed
qed simp_all
next
case (step_call g gd1 frame⇩g)
then obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq (Inca.ICall g) instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from step_call.hyps obtain gd2 where
F2_g: "Fubx_get F2 g = Some gd2" and rel_gd1_gd2: "rel_fundef (=) norm_eq gd1 gd2"
using rel_fundefs_Some1[OF rel_F1_F2] by auto
have wf_gd2: "Subx.wf_fundef (map_option funtype ∘ Fubx_get F2) gd2"
by (rule Subx.wf_fundefs_getD[OF wf_F2 F2_g])
obtain intrs⇩g where gd2_fst_bblock: "map_of (body gd2) (fst (hd (body gd2))) = Some intrs⇩g"
using Subx.wf_fundef_body_neq_NilD[OF wf_gd2]
by (metis hd_in_set map_of_eq_None_iff not_Some_eq prod.collapse prod_in_set_fst_image_conv)
from norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case (ICall g')
hence "g' = g" using norm_eq_instr1_instr2 by simp
hence all_dyn_args: "list_all is_dyn_operand (take (arity gd2) Σ2)"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc ICall, simplified]
using F2_g
by (auto simp: funtype_def eq_append_conv_conj take_map list.pred_set
dest!: Subx.sp_instrs_ConsD replicate_eq_impl_Ball_eq elim!: Subx.sp_instr.cases)
let ?frame⇩g = "allocate_frame g gd2 (take (arity gd2) Σ2) (OpDyn uninitialized)"
let ?st2' = "?frame⇩g # Frame f l pc R2 Σ2 # st2'"
let ?s2' = "State F2 H ?st2'"
have step_s2_s2': "?STEP ?s2'"
using step_call.hyps next_instr2 F2_g rel_gd1_gd2 all_dyn_args
unfolding ICall ‹g' = g›
by (auto simp: s2_def st2_def rel_fundef_arities intro!: Subx.step_call)
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'" by (rule step_s2_s2')
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
by (rule Subx.wf_state_step_preservation[OF wf_s2 step_s2_s2'])
next
have FOO: "fst (hd (body gd1)) = fst (hd (body gd2))"
apply (rule rel_fundef_rel_fst_hd_bodies[OF rel_gd1_gd2])
using Subx.wf_fundefs_getD[OF wf_F2 ‹Fubx_get F2 g = Some gd2›]
by (auto dest: Subx.wf_fundef_body_neq_NilD)
show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
unfolding step_call.hyps allocate_frame_def FOO
proof (rule rel_stacktraces.intros)
show "Fubx_get F2 g = Some gd2"
by (rule F2_g)
next
show "rel_stacktraces (Fubx_get F2) (Some g)
(Frame f l pc (map Subx.norm_unboxed R2) (map Subx.norm_unboxed Σ2) # st1')
(Frame f l pc R2 Σ2 # st2')"
using step_call.hyps rel_stacktraces_Cons next_instr2 F2_g rel_gd1_gd2 all_dyn_args
unfolding ICall ‹g' = g›
by (auto simp: is_valid_fun_call_def rel_fundef_arities intro!: rel_stacktraces.intros)
qed (insert rel_gd1_gd2 all_dyn_args gd2_fst_bblock,
simp_all add: take_map rel_fundef_arities rel_fundef_locals Subx.sp_instrs.Nil
list_all_replicateI)
qed (insert rel_F1_F2, simp_all)
qed
qed simp_all
next
case (step_return fd1 Σ1⇩g frame⇩g' g l⇩g pc⇩g R1⇩g st1'')
then obtain instr2 where
next_instr2: "next_instr (Fubx_get F2) f l pc = Some instr2" and
norm_eq_instr1_instr2: "norm_eq Inca.IReturn instr2"
by (auto dest: rel_fundefs_next_instr1[OF rel_F1_F2])
have pc_in_range: "pc < length instrs" and nth_instrs_pc: "instrs ! pc = instr2"
using next_instr_get_map_ofD[OF next_instr2 F2_f map_of_fd2_l]
by simp_all
from step_return.hyps have rel_fd1_fd2: "rel_fundef (=) norm_eq fd1 fd2"
using rel_fundefsD[OF rel_F1_F2, of f] F2_f by simp
from norm_eq_instr1_instr2
show ?case (is "∃x. ?STEP x ∧ ?MATCH (State F1 H ?st1') x")
proof (cases instr2)
case IReturn
have map_typeof_Σ2: "map typeof Σ2 = replicate (return fd2) None"
using sp_instrs_sufix[OF pc_in_range, unfolded nth_instrs_pc IReturn, simplified]
by (auto elim: Subx.sp_instr.cases dest: Subx.sp_instrs_ConsD)
hence all_dyn_Σ2: "list_all is_dyn_operand Σ2"
by (auto simp: list.pred_set dest: replicate_eq_impl_Ball_eq[OF sym])
show ?thesis
using rel_st1'_st2' unfolding ‹Frame g l⇩g pc⇩g R1⇩g Σ1⇩g # st1'' = st1'›[symmetric]
proof (cases rule: rel_stacktraces.cases)
case (rel_stacktraces_Cons st2'' Σ2⇩g R2⇩g gd2 instrs⇩g)
let ?st2' = "Frame g l⇩g (Suc pc⇩g) R2⇩g (Σ2 @ drop (arity fd2) Σ2⇩g) # st2''"
let ?s2' = "State F2 H ?st2'"
have step_s2_s2': "?STEP ?s2'"
using step_return.hyps next_instr2 F2_f rel_fd1_fd2 rel_stacktraces_Cons all_dyn_Σ2
unfolding IReturn
by (auto simp: s2_def st2_def rel_fundef_arities rel_fundef_return
intro: Subx.step_return)
show ?thesis
proof (intro exI conjI)
show "?STEP ?s2'" by (rule step_s2_s2')
next
show "?MATCH (State F1 H ?st1') ?s2'"
proof (rule match.intros)
show "Subx.wf_state ?s2'"
by (rule Subx.wf_state_step_preservation[OF wf_s2 step_s2_s2'])
next
have "Subx.sp_instr (map_option funtype ∘ Fubx_get F2) (return gd2)
(Ubx.instr.ICall f) (map typeof Σ2⇩g)
(replicate (return fd2) None @ map typeof (drop (arity fd2) Σ2⇩g))"
using rel_stacktraces_Cons F2_f
using replicate_eq_map[of "arity fd2" "take (arity fd2) Σ2⇩g" typeof None]
by (auto simp: funtype_def is_valid_fun_call_def
simp: min_absorb2 list.pred_set take_map[symmetric] drop_map[symmetric]
intro!: Subx.sp_instr.Call[where Σ = "map typeof (drop (arity fd2) Σ2⇩g)"])
then show "rel_stacktraces (Fubx_get F2) None ?st1' ?st2'"
unfolding step_return.hyps
using rel_stacktraces_Cons rel_fd1_fd2 F2_f
using map_typeof_Σ2
by (auto simp: drop_map rel_fundef_arities is_valid_fun_call_def
simp: next_instr_take_Suc_conv funtype_def
intro!: rel_stacktraces.intros Subx.sp_instrs_appendI[where Σ = "map typeof Σ2⇩g"])
qed (insert rel_F1_F2, simp_all)
qed
qed
qed simp_all
qed
qed
qed
lemma match_final_forward:
assumes "match s1 s2" and final_s1: "final Finca_get Inca.IReturn s1"
shows "final Fubx_get Ubx.IReturn s2"
using ‹match s1 s2›
proof (cases s1 s2 rule: match.cases)
case (matchI F2 H st2 F1 st1)
show ?thesis
using final_s1[unfolded matchI]
proof (cases _ _ "State F1 H st1" rule: final.cases)
case (finalI f l pc R Σ)
then show ?thesis
using matchI
by (auto intro!: final.intros elim: rel_stacktraces.cases norm_instr.elims[OF sym]
dest: rel_fundefs_next_instr1)
qed
qed
sublocale inca_ubx_forward_simulation: forward_simulation where
step1 = Sinca.step and final1 = "final Finca_get Inca.IReturn" and
step2 = Subx.step and final2 = "final Fubx_get Ubx.IReturn" and
match = "λ_. match" and order = "λ_ _. False"
using match_final_forward forward_lockstep_simulation
using lockstep_to_plus_forward_simulation[of match Sinca.step _ Subx.step]
by unfold_locales auto
section ‹Bisimulation›
sublocale inca_ubx_bisimulation: bisimulation where
step1 = Sinca.step and final1 = "final Finca_get Inca.IReturn" and
step2 = Subx.step and final2 = "final Fubx_get Ubx.IReturn" and
match = "λ_. match" and order⇩f = "λ_ _. False" and order⇩b = "λ_ _. False"
by unfold_locales
end
end