Theory HOL-IMP.Small_Step
section "Small-Step Semantics of Commands"
theory Small_Step imports Star Big_Step begin
subsection "The transition relation"
inductive
small_step :: "com * state ⇒ com * state ⇒ bool" (infix ‹→› 55)
where
Assign: "(x ::= a, s) → (SKIP, s(x := aval a s))" |
Seq1: "(SKIP;;c⇩2,s) → (c⇩2,s)" |
Seq2: "(c⇩1,s) → (c⇩1',s') ⟹ (c⇩1;;c⇩2,s) → (c⇩1';;c⇩2,s')" |
IfTrue: "bval b s ⟹ (IF b THEN c⇩1 ELSE c⇩2,s) → (c⇩1,s)" |
IfFalse: "¬bval b s ⟹ (IF b THEN c⇩1 ELSE c⇩2,s) → (c⇩2,s)" |
While: "(WHILE b DO c,s) →
(IF b THEN c;; WHILE b DO c ELSE SKIP,s)"
abbreviation
small_steps :: "com * state ⇒ com * state ⇒ bool" (infix ‹→*› 55)
where "x →* y == star small_step x y"
subsection‹Executability›
code_pred small_step .
values "{(c',map t [''x'',''y'',''z'']) |c' t.
(''x'' ::= V ''z'';; ''y'' ::= V ''x'',
<''x'' := 3, ''y'' := 7, ''z'' := 5>) →* (c',t)}"
subsection‹Proof infrastructure›
subsubsection‹Induction rules›
text‹The default induction rule @{thm[source] small_step.induct} only works
for lemmas of the form ‹a → b ⟹ …› where ‹a› and ‹b› are
not already pairs ‹(DUMMY,DUMMY)›. We can generate a suitable variant
of @{thm[source] small_step.induct} for pairs by ``splitting'' the arguments
‹→› into pairs:›
lemmas small_step_induct = small_step.induct[split_format(complete)]
subsubsection‹Proof automation›
declare small_step.intros[simp,intro]
text‹Rule inversion:›
inductive_cases SkipE[elim!]: "(SKIP,s) → ct"
thm SkipE
inductive_cases AssignE[elim!]: "(x::=a,s) → ct"
thm AssignE
inductive_cases SeqE[elim]: "(c1;;c2,s) → ct"
thm SeqE
inductive_cases IfE[elim!]: "(IF b THEN c1 ELSE c2,s) → ct"
inductive_cases WhileE[elim]: "(WHILE b DO c, s) → ct"
text‹A simple property:›
lemma deterministic:
"cs → cs' ⟹ cs → cs'' ⟹ cs'' = cs'"
apply(induction arbitrary: cs'' rule: small_step.induct)
apply blast+
done
subsection "Equivalence with big-step semantics"
lemma star_seq2: "(c1,s) →* (c1',s') ⟹ (c1;;c2,s) →* (c1';;c2,s')"
proof(induction rule: star_induct)
case refl thus ?case by simp
next
case step
thus ?case by (metis Seq2 star.step)
qed
lemma seq_comp:
"⟦ (c1,s1) →* (SKIP,s2); (c2,s2) →* (SKIP,s3) ⟧
⟹ (c1;;c2, s1) →* (SKIP,s3)"
by(blast intro: star.step star_seq2 star_trans)
text‹The following proof corresponds to one on the board where one would
show chains of ‹→› and ‹→*› steps.›
lemma big_to_small:
"cs ⇒ t ⟹ cs →* (SKIP,t)"
proof (induction rule: big_step.induct)
fix s show "(SKIP,s) →* (SKIP,s)" by simp
next
fix x a s show "(x ::= a,s) →* (SKIP, s(x := aval a s))" by auto
next
fix c1 c2 s1 s2 s3
assume "(c1,s1) →* (SKIP,s2)" and "(c2,s2) →* (SKIP,s3)"
thus "(c1;;c2, s1) →* (SKIP,s3)" by (rule seq_comp)
next
fix s::state and b c0 c1 t
assume "bval b s"
hence "(IF b THEN c0 ELSE c1,s) → (c0,s)" by simp
moreover assume "(c0,s) →* (SKIP,t)"
ultimately
show "(IF b THEN c0 ELSE c1,s) →* (SKIP,t)" by (metis star.simps)
next
fix s::state and b c0 c1 t
assume "¬bval b s"
hence "(IF b THEN c0 ELSE c1,s) → (c1,s)" by simp
moreover assume "(c1,s) →* (SKIP,t)"
ultimately
show "(IF b THEN c0 ELSE c1,s) →* (SKIP,t)" by (metis star.simps)
next
fix b c and s::state
assume b: "¬bval b s"
let ?if = "IF b THEN c;; WHILE b DO c ELSE SKIP"
have "(WHILE b DO c,s) → (?if, s)" by blast
moreover have "(?if,s) → (SKIP, s)" by (simp add: b)
ultimately show "(WHILE b DO c,s) →* (SKIP,s)" by(metis star.refl star.step)
next
fix b c s s' t
let ?w = "WHILE b DO c"
let ?if = "IF b THEN c;; ?w ELSE SKIP"
assume w: "(?w,s') →* (SKIP,t)"
assume c: "(c,s) →* (SKIP,s')"
assume b: "bval b s"
have "(?w,s) → (?if, s)" by blast
moreover have "(?if, s) → (c;; ?w, s)" by (simp add: b)
moreover have "(c;; ?w,s) →* (SKIP,t)" by(rule seq_comp[OF c w])
ultimately show "(WHILE b DO c,s) →* (SKIP,t)" by (metis star.simps)
qed
text‹Each case of the induction can be proved automatically:›
lemma "cs ⇒ t ⟹ cs →* (SKIP,t)"
proof (induction rule: big_step.induct)
case Skip show ?case by blast
next
case Assign show ?case by blast
next
case Seq thus ?case by (blast intro: seq_comp)
next
case IfTrue thus ?case by (blast intro: star.step)
next
case IfFalse thus ?case by (blast intro: star.step)
next
case WhileFalse thus ?case
by (metis star.step star_step1 small_step.IfFalse small_step.While)
next
case WhileTrue
thus ?case
by(metis While seq_comp small_step.IfTrue star.step[of small_step])
qed
lemma small1_big_continue:
"cs → cs' ⟹ cs' ⇒ t ⟹ cs ⇒ t"
apply (induction arbitrary: t rule: small_step.induct)
apply auto
done
lemma small_to_big:
"cs →* (SKIP,t) ⟹ cs ⇒ t"
apply (induction cs "(SKIP,t)" rule: star.induct)
apply (auto intro: small1_big_continue)
done
text ‹
Finally, the equivalence theorem:
›
theorem big_iff_small:
"cs ⇒ t = cs →* (SKIP,t)"
by(metis big_to_small small_to_big)
subsection "Final configurations and infinite reductions"
definition "final cs ⟷ ¬(∃cs'. cs → cs')"
lemma finalD: "final (c,s) ⟹ c = SKIP"
apply(simp add: final_def)
apply(induction c)
apply blast+
done
lemma final_iff_SKIP: "final (c,s) = (c = SKIP)"
by (metis SkipE finalD final_def)
text‹Now we can show that ‹⇒› yields a final state iff ‹→›
terminates:›
lemma big_iff_small_termination:
"(∃t. cs ⇒ t) ⟷ (∃cs'. cs →* cs' ∧ final cs')"
by(simp add: big_iff_small final_iff_SKIP)
text‹This is the same as saying that the absence of a big step result is
equivalent with absence of a terminating small step sequence, i.e.\ with
nontermination. Since ‹→› is determininistic, there is no difference
between may and must terminate.›
end