Theory Language

section ‹Language and Semantics›

text ‹In this file, we formalize concepts from section 3:
- Program states and programming language (definition 1)
- Big-step semantics (figure 2)
- Extended states (definition 2)
- Extended semantics (definition 4) and some useful properties (lemma 1)›

theory Language
  imports Main
begin

subsection Language

text ‹Definition 1›

type_synonym ('var, 'val) pstate = "'var  'val"

type_synonym ('var, 'val) bexp = "('var, 'val) pstate  bool"
type_synonym ('var, 'val) exp = "('var, 'val) pstate  'val"


datatype ('var, 'val) stmt = 
  Assign 'var "('var, 'val) exp"
  | Seq "('var, 'val) stmt" "('var, 'val) stmt"  (infixl ;; 60)
  | If "('var, 'val) stmt" "('var, 'val) stmt"                    ―‹Non-deterministic choice›
  | Skip
  | Havoc 'var                                                    ―‹Non-deterministic assignment›
  | Assume "('var, 'val) bexp"
  | While "('var, 'val) stmt"                                     ―‹Non-deterministic loop›

subsection Semantics

text ‹Figure 2›

inductive single_sem :: "('var, 'val) stmt  ('var, 'val) pstate  ('var, 'val) pstate  bool"
  (_, _  _› [51,0] 81)
  where
  SemSkip: "Skip, σ  σ"
| SemAssign: "Assign var e, σ  σ(var := (e σ))"
| SemSeq: " C1, σ  σ1; C2, σ1  σ2   Seq C1 C2, σ  σ2"
| SemIf1: "C1, σ  σ1  If C1 C2, σ  σ1"
| SemIf2: "C2, σ  σ2  If C1 C2, σ  σ2"
| SemHavoc: "Havoc var, σ  σ(var := v)"
| SemAssume: "b σ  Assume b, σ  σ"
| SemWhileIter: " C, σ  σ' ; While C, σ'  σ''   While C, σ  σ''"
| SemWhileExit: "While C, σ  σ"

inductive_cases single_sem_Seq_elim[elim!]: "Seq C1 C2, σ  σ'"
inductive_cases single_sem_Skip_elim[elim!]: "Skip, σ  σ'"
inductive_cases single_sem_While_elim: "While C, σ  σ'"
inductive_cases single_sem_If_elim[elim!]: "If C1 C2, σ  σ'"
inductive_cases single_sem_Assume_elim[elim!]: "Assume b, σ  σ'"
inductive_cases single_sem_Assign_elim[elim!]: "Assign x e, σ  σ'"
inductive_cases single_sem_Havoc_elim[elim!]: "Havoc x, σ  σ'"


subsection ‹Extended States and Extended Semantics›

text ‹Definition 2: Extended states›
type_synonym ('lvar, 'lval, 'pvar, 'pval) state = "('lvar  'lval) × ('pvar, 'pval) pstate"

text ‹Definition 4: Extended semantics›
definition sem :: "('pvar, 'pval) stmt  ('lvar, 'lval, 'pvar, 'pval) state set  ('lvar, 'lval, 'pvar, 'pval) state set" where
  "sem C S = { (l, σ') |σ' σ l. (l, σ)  S  C, σ  σ' }"

lemma in_sem:
  "φ  sem C S  (σ. (fst φ, σ)  S  single_sem C σ (snd φ))" (is "?A  ?B")
proof
  assume ?A
  then obtain σ' σ l where "φ = (l, σ')" "(l, σ)  S  C, σ  σ'"
    using sem_def[of C S] by auto
  then show ?B
    by auto
next
  show "?B  ?A"
    by (metis (mono_tags, lifting) CollectI prod.collapse sem_def)
qed

text ‹Lemma 1: Useful properties of the extended semantics›

lemma sem_seq:
  "sem (Seq C1 C2) S = sem C2 (sem C1 S)" (is "?A = ?B")
proof
  show "?A  ?B"
  proof
    fix x2 assume "x2  ?A"
    then obtain x0 where "(fst x2, x0)  S" "single_sem (Seq C1 C2) x0 (snd x2)"
      by (metis in_sem)
    then obtain x1 where "single_sem C1 x0 x1" "single_sem C2 x1 (snd x2)"
      using single_sem_Seq_elim[of C1 C2 x0 "snd x2"]
      by blast
    then show "x2  ?B"
      by (metis (fst x2, x0)  S fst_conv in_sem snd_conv)
  qed
  show "?B  ?A"
  proof
    fix x2 assume "x2  ?B"
    then obtain x1 where "(fst x2, x1)  sem C1 S" "single_sem C2 x1 (snd x2)"
      by (metis in_sem)
    then obtain x0 where "(fst x2, x0)  S" "single_sem C1 x0 x1"
      by (metis fst_conv in_sem snd_conv)
    then have "single_sem (Seq C1 C2) x0 (snd x2)"
      by (simp add: SemSeq C2, x1  snd x2)
    then show "x2  ?A"
      by (meson (fst x2, x0)  S in_sem)
  qed
qed

lemma sem_skip:
  "sem Skip S = S"
  using single_sem_Skip_elim SemSkip in_sem[of _ Skip S]
  by fastforce

lemma sem_union:
  "sem C (S1  S2) = sem C S1  sem C S2" (is "?A = ?B")
proof
  show "?A  ?B" 
  proof
    fix x assume "x  ?A"
    then obtain y where "(fst x, y)  S1  S2" "single_sem C y (snd x)"
      using in_sem by blast
    then show "x  ?B"
      by (metis Un_iff in_sem)
  qed
  show "?B  ?A"
  proof
    fix x assume "x  ?B"
    show "x  ?A"
    proof (cases "x  sem C S1")
      case True
      then show ?thesis
        by (metis IntD2 Un_Int_eq(3) in_sem)
    next
      case False
      then show ?thesis
        by (metis Un_iff x  sem C S1  sem C S2 in_sem)
    qed
  qed
qed

lemma sem_union_general:
  "sem C (x. f x) = (x. sem C (f x))" (is "?A = ?B")
proof
  show "?A  ?B"
  proof
    fix b assume "b  ?A"
    then obtain a where "a  (x. f x)" "fst a = fst b" "single_sem C (snd a) (snd b)"
      by (metis fst_conv in_sem snd_conv)
    then obtain x where "a  f x" by blast
    then have "b  sem C (f x)"
      by (metis C, snd a  snd b fst a = fst b in_sem surjective_pairing)
    then show "b  ?B"
      by blast
  qed
  show "?B  ?A"
  proof
    fix y assume "y  ?B"
    then obtain x where "y  sem C (f x)"
      by blast
    then show "y  ?A"
      by (meson UN_I in_sem iso_tuple_UNIV_I)
  qed
qed

lemma sem_monotonic:
  assumes "S  S'"
  shows "sem C S  sem C S'"
  by (metis assms sem_union subset_Un_eq)

lemma subsetPairI:
  assumes "l σ. (l, σ)  A  (l, σ)  B"
  shows "A  B"
  by (simp add: assms subrelI)


lemma sem_if:
  "sem (If C1 C2) S = sem C1 S  sem C2 S" (is "?A = ?B")
proof
  show "?A  ?B"
  proof (rule subsetPairI)
    fix l y assume "(l, y)  ?A"
    then obtain x where "(l, x)  S" "single_sem (If C1 C2) x y"
      by (metis fst_conv in_sem snd_conv)
    then show "(l, y)  ?B" using single_sem_If_elim
      UnI1 UnI2 in_sem
      by (metis fst_conv snd_conv)
  qed
  show "?B  ?A"
    using SemIf1 SemIf2 in_sem
    by (metis (no_types, lifting) Un_subset_iff subsetI)
qed

lemma sem_assume:
  "sem (Assume b) S = { (l, σ) |l σ. (l, σ)  S  b σ }" (is "?A = ?B")
proof
  show "?A  ?B"
  proof (rule subsetPairI)
    fix l y assume "(l, y)  ?A" then obtain x where "(l, x)  S" "single_sem (Assume b) x y"
      using in_sem
      by (metis fst_conv snd_conv)
    then show "(l, y)  ?B" using single_sem_Assume_elim by blast
  qed
  show "?B  ?A"
  proof (rule subsetPairI)
    fix l σ assume asm0: "(l, σ)  {(l, σ) |l σ. (l, σ)  S  b σ}"
    then have "(l, σ)  S" "b σ" by simp_all
    then show "(l, σ)  sem (Assume b) S"
      by (metis SemAssume fst_eqD in_sem snd_eqD)
  qed
qed

lemma while_then_reaches:
  assumes "(single_sem C)** σ σ''"
  shows "single_sem (While C) σ σ''"
  using assms
proof (induct rule: converse_rtranclp_induct)
  case base
  then show ?case
    by (simp add: SemWhileExit)
next
  case (step y z)
  then show ?case
    using SemWhileIter by blast
qed

lemma in_closure_then_while:
  assumes "single_sem C' σ σ''"
  shows "C. C' = While C  (single_sem C)** σ σ''"
  using assms
proof (induct rule: single_sem.induct)
  case (SemWhileIter σ C' σ' σ'')
  then show ?case
    by (metis (no_types, lifting) rtranclp.rtrancl_into_rtrancl rtranclp.rtrancl_refl rtranclp_trans stmt.inject(6))
next
  case (SemWhileExit σ C')
  then show ?case
    by blast
qed (auto)

theorem loop_equiv:
  "single_sem (While C) σ σ'  (single_sem C)** σ σ'"
  using in_closure_then_while while_then_reaches by blast


fun iterate_sem where
  "iterate_sem 0 _ S = S"
| "iterate_sem (Suc n) C S = sem C (iterate_sem n C S)"

lemma in_iterate_then_in_trans:
  assumes "(l, σ'')  iterate_sem n C S"
  shows "σ. (l, σ)  S  (single_sem C)** σ σ''"
  using assms
proof (induct n arbitrary: σ'' S)
  case 0
  then show ?case
    using iterate_sem.simps(1) by blast
next
  case (Suc n)
  then show ?case
    using in_sem rtranclp.rtrancl_into_rtrancl
    by (metis (mono_tags, lifting) fst_conv iterate_sem.simps(2) snd_conv)
qed

lemma reciprocal:
  assumes "(single_sem C)** σ σ''"
      and "(l, σ)  S"
    shows "n. (l, σ'')  iterate_sem n C S"
  using assms
proof (induct rule: rtranclp_induct)
  case base
  then show ?case
    using iterate_sem.simps(1) by blast
next
  case (step y z)
  then obtain n where "(l, y)  iterate_sem n C S" by blast
  then show ?case
    using in_sem iterate_sem.simps(2) step.hyps(2)
    by (metis fst_eqD snd_eqD)
qed

lemma union_iterate_sem_trans:
  "(l, σ'')  (n. iterate_sem n C S)  (σ. (l, σ)  S  (single_sem C)** σ σ'')" (is "?A  ?B")
  using in_iterate_then_in_trans reciprocal by auto

lemma sem_while:
  "sem (While C) S = (n. iterate_sem n C S)" (is "?A = ?B")
proof
  show "?A  ?B"
  proof (rule subsetPairI)
    fix l y assume "(l, y)  ?A"
    then obtain x where x_def: "(l, x)  S" "(single_sem C)** x y"
      using in_closure_then_while in_sem
      by (metis fst_eqD snd_conv)
    then have "single_sem (While C) x y"
      using while_then_reaches by blast
    then show "(l, y)  ?B"
      by (metis x_def union_iterate_sem_trans)
  qed
  show "?B  ?A"
  proof (rule subsetPairI)
    fix l y assume "(l, y)  ?B"
    then obtain x where "(l, x)  S" "(single_sem C)** x y"
      using union_iterate_sem_trans by blast
    then show "(l, y)  ?A"
      using in_sem while_then_reaches by fastforce
  qed
qed


lemma assume_sem:
  "sem (Assume b) S = Set.filter (b  snd) S" (is "?A = ?B")
proof
  show "?A  ?B"
  proof (rule subsetPairI)
    fix l σ
    assume asm0: "(l, σ)  sem (Assume b) S"
    then show "(l, σ)  Set.filter (b  snd) S"
      by (metis comp_apply fst_conv in_sem member_filter single_sem_Assume_elim snd_conv)
  qed
  show "?B  ?A"
    by (metis (mono_tags, opaque_lifting) SemAssume comp_apply in_sem member_filter prod.collapse subsetI)
qed

lemma sem_split_general:
  "sem C (x. F x) = (x. sem C (F x))" (is "?A = ?B")
proof
  show "?A  ?B"
  proof (rule subsetPairI)
    fix l σ'
    assume asm0: "(l, σ')  sem C ( (range F))"
    then obtain x σ where "(l, σ)  F x" "single_sem C σ σ'"
      by (metis (no_types, lifting) UN_iff fst_conv in_sem snd_conv)
    then show "(l, σ')  (x. sem C (F x))"
      using asm0 sem_union_general by blast
  qed
  show "?B  ?A"
    by (simp add: SUP_least Sup_upper sem_monotonic)
qed

fun written_vars where
  "written_vars (Assign x _) = {x}"
| "written_vars (Havoc x) = {x}"
| "written_vars (C1;; C2) = written_vars C1  written_vars C2"
| "written_vars (If C1 C2) = written_vars C1  written_vars C2"
| "written_vars (While C) = written_vars C"
| "written_vars _ = {}"

lemma written_vars_not_modified:
  assumes "single_sem C φ φ'"
    and "x  written_vars C"
    shows "φ x = φ' x"
  using assms
  by (induct rule: single_sem.induct) auto

end