Theory QuantK_Sqrt
theory QuantK_Sqrt
imports QuantK_VCG "HOL-Library.Discrete_Functions"
begin
subsection ‹Example: discrete square root in the quantitative Hoare logic›
text ‹As an example, consider the following program that computes the discrete square root:›
definition c :: com where "c=
''l''::= N 0 ;;
''m'' ::= N 0 ;;
''r''::= Plus (N 1) (V ''x'');;
(WHILE (Less (Plus (N 1) (V ''l'')) (V ''r''))
DO (''m'' ::= (Div (Plus (V ''l'') (V ''r'')) (N 2)) ;;
(IF Not (Less (Times (V ''m'') (V ''m'')) (V ''x''))
THEN ''l'' ::= V ''m''
ELSE ''r'' ::= V ''m'');;
''m'' ::= N 0))"
text ‹In this theory we will show that its running time is in the order of magnitude of the
logarithm of the variable ''x''›
text ‹a little lemma we need later for bounding the running time:›
lemma absch: "⋀s k. 1 + s ''x'' = 2 ^ k ⟹ 5 * k ≤ 96 + 100 * floor_log (nat (s ''x''))"
proof -
fix s :: state and k :: nat
assume F: " 1 + s ''x'' = 2 ^ k "
then have i: "nat (1 + s ''x'') = 2 ^ k" and nn: "s ''x''≥ 0" apply (auto simp: nat_power_eq)
by (smt one_le_power)
have F: "1 + nat (s ''x'') = 2 ^k" unfolding i[symmetric] using nn by auto
show "5 * k ≤ 96 + 100 * floor_log (nat (s ''x''))"
proof (cases "s ''x'' ≥ 1")
case True
have "5 * k = 5 * (floor_log (2^k))" by auto
also have "… = 5 * floor_log (1 + nat (s ''x''))" by(simp only: F[symmetric])
also have "… ≤ 5 * floor_log (nat (s ''x'' + s ''x''))" using True
apply auto apply(rule monoD[OF floor_log_mono]) by auto
also have "… = 5 * floor_log (2 * nat (s ''x''))" by (auto simp: nat_mult_distrib)
also have "… = 5 + 5 * (floor_log (nat (s ''x'')))" using True by auto
also have "… ≤ 96 + 100 * floor_log (nat (s ''x''))" by simp
finally show ?thesis .
next
case False
with nn have gt1: "s ''x'' = 0" by auto
from F[unfolded gt1] have "2 ^ k = (1::int)" using floor_log_Suc_zero by auto
then have "k=0"
by (metis One_nat_def add.right_neutral gt1 i n_not_Suc_n nat_numeral nat_power_eq_Suc_0_iff numeral_2_eq_2 numeral_One)
then show ?thesis by(simp add: gt1)
qed
qed
text ‹For simplicity we assume, that during the process all segments between ''l'' and ''r'' have
as length a power of two. This simplifies the analysis.
To obtain this we choose the prepotential P accordingly.
Now lets show the correctness of our time complexity: the binary search is in O(log ''x'') ›
lemma
assumes
P: "P = (λs. ↑ ( (∃k. 1 + s ''x'' = 2 ^ k)) + (floor_log (nat ( s ''x'')) + 1))" and
Q[simp]: "Q = (λ_. 0)"
shows " ⊢⇩2⇩' {P} c {Q}"
proof -
let ?lb = "''m'' ::=
(Div (Plus (V ''l'') (V ''r'')) (N 2)) ;;
(IF Not (Less (Times (V ''m'') (V ''m'')) (V ''x''))
THEN ''l'' ::= V ''m''
ELSE ''r'' ::= V ''m'');;
(''m'' ::= N 0)::acom"
define I where "I ≡ (λs::state. (( emb ( s ''l''≥0 ∧ ( ∃k. s ''r'' - s ''l'' = 2 ^ k) ) + 5 * floor_log (nat (s ''r'') - nat (s ''l'')))::enat) )"
let ?C = " ((''l''::= N 0) :: acom) ;; (''m'' ::= N 0) ;; ''r''::= Plus (N 1) (V ''x'');; ({I} WHILE (Less (Plus (N 1) (V ''l'')) (V ''r'')) DO ?lb)"
have s: "strip ?C = c" unfolding c_def by auto
have v: "⊢⇩2⇩' {P} strip ?C {Q}"
proof (rule vc_sound'', safe)
show "vc ?C Q" apply auto
unfolding I_def
subgoal for s
apply(cases "(∃k. s ''r'' - s ''l'' = 2 ^ k)") apply auto
apply(cases "(1 + s ''l'' < s ''r'')") apply auto
apply(cases "0 ≤ s ''l''") apply auto
proof (goal_cases)
case (1 k)
then have "k>0" using gr0I by force
then obtain k' where k': "k=k'+1" by (metis Suc_eq_plus1 Suc_pred)
from 1 k' have R: " s ''r'' - (s ''l'' + s ''r'') div 2 = 2 ^ k'" by auto
have gN: "s ''l''≤s ''r''" "s ''l''≥0" "s ''r'' ≥ 0" using 1 by auto
have n: "nat ( s ''r'' - (s ''l'' + s ''r'') div 2 ) = nat (s ''r'') - nat ((s ''l'' + s ''r'') div 2)"
using gN apply(simp add: nat_diff_distrib nat_div_distrib) done
have R': "nat (s ''r'') - nat ((s ''l'' + s ''r'') div 2) = 2 ^ k'"
apply(simp only: n[symmetric] R nat_power_eq) by auto
have S': "nat (s ''r'') - nat (s ''l'') = 2 ^ k"
using gN apply(simp only: nat_diff_distrib[symmetric] 1(2) nat_power_eq) by auto
have N: "0 ≤ (s ''l'' + s ''r'') div 2" using gN by auto
from N show ?case apply (simp ) apply (simp only : R R' S' k') by (auto simp: eSuc_enat plus_1_eSuc(2))
qed
subgoal for s
apply(cases "∃k. s ''r'' - s ''l'' = 2 ^ k") apply auto
apply (cases "(1 + s ''l'' < s ''r'')") apply auto
apply(cases "0 ≤ s ''l''") apply auto
proof (goal_cases)
case (1 k)
from 1(2,3) have "k>0" using gr0I by force
then obtain k' where k': "k=k'+1" by (metis Suc_eq_plus1 Suc_pred)
from 1 k' have R: " (s ''l'' + s ''r'') div 2 - s ''l'' = 2 ^ k'" by auto
have gN: "s ''l''≤s ''r''" "s ''l''≥0" "s ''r'' ≥ 0" using 1 by auto
have n: "nat ((s ''l'' + s ''r'') div 2 - s ''l'') = nat ( (s ''l'' + s ''r'') div 2) - nat (s ''l'')"
using gN apply(simp add: nat_diff_distrib nat_div_distrib) done
have R': "nat ( (s ''l'' + s ''r'') div 2) - nat (s ''l'') = 2 ^ k'"
apply(simp only: n[symmetric] R nat_power_eq) by auto
have S': "nat (s ''r'') - nat (s ''l'') = 2 ^ k"
using gN apply(simp only: nat_diff_distrib[symmetric] 1(2) nat_power_eq) by auto
show ?case apply (simp only : R R' S' k') by (auto simp: eSuc_enat plus_1_eSuc(2))
qed done
next
fix s
show "pre ?C Q s ≤ enat 100 * P s" unfolding I_def apply(simp only: P) apply auto apply(cases "(∃k. 1 + s ''x'' = 2 ^ k)")
apply (auto simp: eSuc_enat plus_1_eSuc(2) nat_power_eq)
using absch by force
qed auto
from s v show ?thesis by simp
qed
end