Theory Subresultants.Resultant_Prelim
section ‹Resultants›
text ‹This theory defines the Sylvester matrix and the resultant and contains
basic facts about these notions. After the connection between resultants
and subresultants has been established, we then use properties of subresultants
to transfer them to resultants. Remark: these properties have previously been proven
separately for both resultants and subresultants; and this is the reason for
splitting the theory of resultants in two parts, namely ``Resultant-Prelim'' and
``Resultant'' which is located in the Algebraic-Number AFP-entry.
›
theory Resultant_Prelim
imports
Jordan_Normal_Form.Determinant
Polynomial_Interpolation.Ring_Hom_Poly
begin
text ‹Sylvester matrix›
definition sylvester_mat_sub :: "nat ⇒ nat ⇒ 'a poly ⇒ 'a poly ⇒ 'a :: zero mat" where
"sylvester_mat_sub m n p q ≡
mat (m+n) (m+n) (λ (i,j).
if i < n then
if i ≤ j ∧ j - i ≤ m then coeff p (m + i - j) else 0
else if i - n ≤ j ∧ j ≤ i then coeff q (i-j) else 0)"
definition sylvester_mat :: "'a poly ⇒ 'a poly ⇒ 'a :: zero mat" where
"sylvester_mat p q ≡ sylvester_mat_sub (degree p) (degree q) p q"
lemma sylvester_mat_sub_dim[simp]:
fixes m n p q
defines "S ≡ sylvester_mat_sub m n p q"
shows "dim_row S = m+n" and "dim_col S = m+n"
unfolding S_def sylvester_mat_sub_def by auto
lemma sylvester_mat_sub_carrier:
shows "sylvester_mat_sub m n p q ∈ carrier_mat (m+n) (m+n)" by auto
lemma sylvester_mat_dim[simp]:
fixes p q
defines "d ≡ degree p + degree q"
shows "dim_row (sylvester_mat p q) = d" "dim_col (sylvester_mat p q) = d"
unfolding sylvester_mat_def d_def by auto
lemma sylvester_carrier_mat:
fixes p q
defines "d ≡ degree p + degree q"
shows "sylvester_mat p q ∈ carrier_mat d d" unfolding d_def by auto
lemma sylvester_mat_sub_index:
fixes p q
assumes i: "i < m+n" and j: "j < m+n"
shows "sylvester_mat_sub m n p q $$ (i,j) =
(if i < n then
if i ≤ j ∧ j - i ≤ m then coeff p (m + i - j) else 0
else if i - n ≤ j ∧ j ≤ i then coeff q (i-j) else 0)"
unfolding sylvester_mat_sub_def
unfolding index_mat(1)[OF i j] by auto
lemma sylvester_index_mat:
fixes p q
defines "m ≡ degree p" and "n ≡ degree q"
assumes i: "i < m+n" and j: "j < m+n"
shows "sylvester_mat p q $$ (i,j) =
(if i < n then
if i ≤ j ∧ j - i ≤ m then coeff p (m + i - j) else 0
else if i - n ≤ j ∧ j ≤ i then coeff q (i - j) else 0)"
unfolding sylvester_mat_def
using sylvester_mat_sub_index[OF i j] unfolding m_def n_def.
lemma sylvester_index_mat2:
fixes p q :: "'a :: comm_semiring_1 poly"
defines "m ≡ degree p" and "n ≡ degree q"
assumes i: "i < m+n" and j: "j < m+n"
shows "sylvester_mat p q $$ (i,j) =
(if i < n then coeff (monom 1 (n - i) * p) (m+n-j)
else coeff (monom 1 (m + n - i) * q) (m+n-j))"
apply(subst sylvester_index_mat)
unfolding m_def[symmetric] n_def[symmetric]
using i j apply (simp,simp)
unfolding coeff_monom_mult
apply(cases "i < n")
apply (cases "i ≤ j ∧ j - i ≤ m")
using j m_def apply (force, force simp: coeff_eq_0)
apply (cases "i - n ≤ j ∧ j ≤ i")
using i j coeff_eq_0[of q] n_def by auto
lemma sylvester_mat_sub_0[simp]: "sylvester_mat_sub 0 n 0 q = 0⇩m n n"
unfolding sylvester_mat_sub_def by auto
lemma sylvester_mat_0[simp]: "sylvester_mat 0 q = 0⇩m (degree q) (degree q)"
unfolding sylvester_mat_def by simp
lemma sylvester_mat_const[simp]:
fixes a :: "'a :: semiring_1"
shows "sylvester_mat [:a:] q = a ⋅⇩m 1⇩m (degree q)"
and "sylvester_mat p [:a:] = a ⋅⇩m 1⇩m (degree p)"
by(auto simp: sylvester_index_mat)
lemma sylvester_mat_sub_map:
assumes f0: "f 0 = 0"
shows "map_mat f (sylvester_mat_sub m n p q) = sylvester_mat_sub m n (map_poly f p) (map_poly f q)"
(is "?l = ?r")
proof(rule eq_matI)
note [simp] = coeff_map_poly[of f, OF f0]
show dim: "dim_row ?l = dim_row ?r" "dim_col ?l = dim_col ?r" by auto
fix i j
assume ij: "i < dim_row ?r" "j < dim_col ?r"
note ij' = this[unfolded sylvester_mat_sub_dim]
note ij'' = ij[unfolded dim[symmetric] index_map_mat]
show "?l $$ (i, j) = ?r $$ (i,j)"
unfolding index_map_mat(1)[OF ij'']
unfolding sylvester_mat_sub_index[OF ij']
unfolding Let_def
using f0 by auto
qed
definition resultant :: "'a poly ⇒ 'a poly ⇒ 'a :: comm_ring_1" where
"resultant p q = det (sylvester_mat p q)"
text ‹Resultant, but the size of the base Sylvester matrix is given.›
definition "resultant_sub m n p q = det (sylvester_mat_sub m n p q)"
lemma resultant_sub: "resultant p q = resultant_sub (degree p) (degree q) p q"
unfolding resultant_def sylvester_mat_def resultant_sub_def by auto
lemma resultant_const[simp]:
fixes a :: "'a :: comm_ring_1"
shows "resultant [:a:] q = a ^ (degree q)"
and "resultant p [:a:] = a ^ (degree p)"
unfolding resultant_def unfolding sylvester_mat_const by simp_all
lemma resultant_1[simp]:
fixes p :: "'a :: comm_ring_1 poly"
shows "resultant 1 p = 1" "resultant p 1 = 1"
using resultant_const(1) [of 1 p] resultant_const(2) [of p 1]
by (auto simp add: pCons_one)
lemma resultant_0[simp]:
fixes p :: "'a :: comm_ring_1 poly"
assumes "degree p > 0"
shows "resultant 0 p = 0" "resultant p 0 = 0"
using resultant_const(1)[of 0 p] resultant_const(2)[of p 0]
using zero_power assms by auto
lemma (in comm_ring_hom) resultant_map_poly: "degree (map_poly hom p) = degree p ⟹
degree (map_poly hom q) = degree q ⟹ resultant (map_poly hom p) (map_poly hom q) = hom (resultant p q)"
unfolding resultant_def sylvester_mat_def sylvester_mat_sub_def hom_det[symmetric]
by (rule arg_cong[of _ _ det], auto)
lemma (in inj_comm_ring_hom) resultant_hom: "resultant (map_poly hom p) (map_poly hom q) = hom (resultant p q)"
by (rule resultant_map_poly, auto)
end