Theory Finitary
theory Finitary
imports Ordinal
begin
class finitary =
fixes hf_of :: "'a ⇒ hf"
assumes inj: "inj hf_of"
begin
lemma hf_of_eq_iff [simp]: "hf_of x = hf_of y ⟷ x=y"
using inj by (auto simp: inj_on_def)
end
instantiation unit :: finitary
begin
definition hf_of_unit_def: "hf_of (u::unit) ≡ 0"
instance
by intro_classes (auto simp: inj_on_def hf_of_unit_def)
end
instantiation bool :: finitary
begin
definition hf_of_bool_def: "hf_of b ≡ if b then 1 else 0"
instance
by intro_classes (auto simp: inj_on_def hf_of_bool_def)
end
instantiation nat :: finitary
begin
definition hf_of_nat_def: "hf_of ≡ ord_of"
instance
by intro_classes (auto simp: inj_on_def hf_of_nat_def)
end
instantiation int :: finitary
begin
definition hf_of_int_def:
"hf_of i ≡ if i≥(0::int) then ⟨0, hf_of (nat i)⟩ else ⟨1, hf_of (nat (-i))⟩"
instance
by intro_classes (auto simp: inj_on_def hf_of_int_def)
end
text ‹Strings are char lists, and are not considered separately.›
instantiation char :: finitary
begin
definition hf_of_char_def:
"hf_of x ≡ hf_of (of_char x :: nat)"
instance
by standard (auto simp: inj_on_def hf_of_char_def)
end
instantiation prod :: (finitary,finitary) finitary
begin
definition hf_of_prod_def:
"hf_of ≡ λ(x,y). ⟨hf_of x, hf_of y⟩"
instance
by intro_classes (auto simp: inj_on_def hf_of_prod_def)
end
instantiation sum :: (finitary,finitary) finitary
begin
definition hf_of_sum_def:
"hf_of ≡ case_sum (HF.Inl o hf_of) (HF.Inr o hf_of)"
instance
by intro_classes (auto simp: inj_on_def hf_of_sum_def split: sum.split_asm)
end
instantiation option :: (finitary) finitary
begin
definition hf_of_option_def:
"hf_of ≡ case_option 0 (λx. ⦃hf_of x⦄)"
instance
by intro_classes (auto simp: inj_on_def hf_of_option_def split: option.split_asm)
end
instantiation list :: (finitary) finitary
begin
primrec hf_of_list where
"hf_of_list Nil = 0"
| "hf_of_list (x#xs) = ⟨hf_of x, hf_of_list xs⟩"
lemma [simp]: fixes x :: "'a list" shows "hf_of x = hf_of y ⟹ x = y"
proof (induction x arbitrary: y)
case Nil
then show ?case by (cases y) auto
next
case (Cons a x)
then show ?case by (cases y) auto
qed
instance
by intro_classes (auto simp: inj_on_def)
end
end