Theory CFG
section ‹CFG›
theory CFG imports BasicDefs begin
subsection ‹The abstract CFG›
subsubsection ‹Locale fixes and assumptions›
locale CFG =
fixes sourcenode :: "'edge ⇒ 'node"
fixes targetnode :: "'edge ⇒ 'node"
fixes kind :: "'edge ⇒ ('var,'val,'ret,'pname) edge_kind"
fixes valid_edge :: "'edge ⇒ bool"
fixes Entry::"'node" (‹'('_Entry'_')›)
fixes get_proc::"'node ⇒ 'pname"
fixes get_return_edges::"'edge ⇒ 'edge set"
fixes procs::"('pname × 'var list × 'var list) list"
fixes Main::"'pname"
assumes Entry_target [dest]: "⟦valid_edge a; targetnode a = (_Entry_)⟧ ⟹ False"
and get_proc_Entry:"get_proc (_Entry_) = Main"
and Entry_no_call_source:
"⟦valid_edge a; kind a = Q:r↪⇘p⇙fs; sourcenode a = (_Entry_)⟧ ⟹ False"
and edge_det:
"⟦valid_edge a; valid_edge a'; sourcenode a = sourcenode a';
targetnode a = targetnode a'⟧ ⟹ a = a'"
and Main_no_call_target:"⟦valid_edge a; kind a = Q:r↪⇘Main⇙f⟧ ⟹ False"
and Main_no_return_source:"⟦valid_edge a; kind a = Q'↩⇘Main⇙f'⟧ ⟹ False"
and callee_in_procs:
"⟦valid_edge a; kind a = Q:r↪⇘p⇙fs⟧ ⟹ ∃ins outs. (p,ins,outs) ∈ set procs"
and get_proc_intra:"⟦valid_edge a; intra_kind(kind a)⟧
⟹ get_proc (sourcenode a) = get_proc (targetnode a)"
and get_proc_call:
"⟦valid_edge a; kind a = Q:r↪⇘p⇙fs⟧ ⟹ get_proc (targetnode a) = p"
and get_proc_return:
"⟦valid_edge a; kind a = Q'↩⇘p⇙f'⟧ ⟹ get_proc (sourcenode a) = p"
and call_edges_only:"⟦valid_edge a; kind a = Q:r↪⇘p⇙fs⟧
⟹ ∀a'. valid_edge a' ∧ targetnode a' = targetnode a ⟶
(∃Qx rx fsx. kind a' = Qx:rx↪⇘p⇙fsx)"
and return_edges_only:"⟦valid_edge a; kind a = Q'↩⇘p⇙f'⟧
⟹ ∀a'. valid_edge a' ∧ sourcenode a' = sourcenode a ⟶
(∃Qx fx. kind a' = Qx↩⇘p⇙fx)"
and get_return_edge_call:
"⟦valid_edge a; kind a = Q:r↪⇘p⇙fs⟧ ⟹ get_return_edges a ≠ {}"
and get_return_edges_valid:
"⟦valid_edge a; a' ∈ get_return_edges a⟧ ⟹ valid_edge a'"
and only_call_get_return_edges:
"⟦valid_edge a; a' ∈ get_return_edges a⟧ ⟹ ∃Q r p fs. kind a = Q:r↪⇘p⇙fs"
and call_return_edges:
"⟦valid_edge a; kind a = Q:r↪⇘p⇙fs; a' ∈ get_return_edges a⟧
⟹ ∃Q' f'. kind a' = Q'↩⇘p⇙f'"
and return_needs_call: "⟦valid_edge a; kind a = Q'↩⇘p⇙f'⟧
⟹ ∃!a'. valid_edge a' ∧ (∃Q r fs. kind a' = Q:r↪⇘p⇙fs) ∧ a ∈ get_return_edges a'"
and intra_proc_additional_edge:
"⟦valid_edge a; a' ∈ get_return_edges a⟧
⟹ ∃a''. valid_edge a'' ∧ sourcenode a'' = targetnode a ∧
targetnode a'' = sourcenode a' ∧ kind a'' = (λcf. False)⇩√"
and call_return_node_edge:
"⟦valid_edge a; a' ∈ get_return_edges a⟧
⟹ ∃a''. valid_edge a'' ∧ sourcenode a'' = sourcenode a ∧
targetnode a'' = targetnode a' ∧ kind a'' = (λcf. False)⇩√"
and call_only_one_intra_edge:
"⟦valid_edge a; kind a = Q:r↪⇘p⇙fs⟧
⟹ ∃!a'. valid_edge a' ∧ sourcenode a' = sourcenode a ∧ intra_kind(kind a')"
and return_only_one_intra_edge:
"⟦valid_edge a; kind a = Q'↩⇘p⇙f'⟧
⟹ ∃!a'. valid_edge a' ∧ targetnode a' = targetnode a ∧ intra_kind(kind a')"
and same_proc_call_unique_target:
"⟦valid_edge a; valid_edge a'; kind a = Q⇩1:r⇩1↪⇘p⇙fs⇩1; kind a' = Q⇩2:r⇩2↪⇘p⇙fs⇩2⟧
⟹ targetnode a = targetnode a'"
and unique_callers:"distinct_fst procs"
and distinct_formal_ins:"(p,ins,outs) ∈ set procs ⟹ distinct ins"
and distinct_formal_outs:"(p,ins,outs) ∈ set procs ⟹ distinct outs"
begin
lemma get_proc_get_return_edge:
assumes "valid_edge a" and "a' ∈ get_return_edges a"
shows "get_proc (sourcenode a) = get_proc (targetnode a')"
proof -
from assms obtain ax where "valid_edge ax" and "sourcenode a = sourcenode ax"
and "targetnode a' = targetnode ax" and "intra_kind(kind ax)"
by(auto dest:call_return_node_edge simp:intra_kind_def)
thus ?thesis by(fastforce intro:get_proc_intra)
qed
lemma call_intra_edge_False:
assumes "valid_edge a" and "kind a = Q:r↪⇘p⇙fs" and "valid_edge a'"
and "sourcenode a = sourcenode a'" and "intra_kind(kind a')"
shows "kind a' = (λcf. False)⇩√"
proof -
from ‹valid_edge a› ‹kind a = Q:r↪⇘p⇙fs› obtain ax where "ax ∈ get_return_edges a"
by(fastforce dest:get_return_edge_call)
with ‹valid_edge a› obtain a'' where "valid_edge a''"
and "sourcenode a'' = sourcenode a" and "kind a'' = (λcf. False)⇩√"
by(fastforce dest:call_return_node_edge)
from ‹kind a'' = (λcf. False)⇩√› have "intra_kind(kind a'')"
by(simp add:intra_kind_def)
with assms ‹valid_edge a''› ‹sourcenode a'' = sourcenode a›
‹kind a'' = (λcf. False)⇩√›
show ?thesis by(fastforce dest:call_only_one_intra_edge)
qed
lemma formal_in_THE:
"⟦valid_edge a; kind a = Q:r↪⇘p⇙fs; (p,ins,outs) ∈ set procs⟧
⟹ (THE ins. ∃outs. (p,ins,outs) ∈ set procs) = ins"
by(fastforce dest:distinct_fst_isin_same_fst intro:unique_callers)
lemma formal_out_THE:
"⟦valid_edge a; kind a = Q↩⇘p⇙f; (p,ins,outs) ∈ set procs⟧
⟹ (THE outs. ∃ins. (p,ins,outs) ∈ set procs) = outs"
by(fastforce dest:distinct_fst_isin_same_fst intro:unique_callers)
subsubsection ‹Transfer and predicate functions›
fun params :: "(('var ⇀ 'val) ⇀ 'val) list ⇒ ('var ⇀ 'val) ⇒ 'val option list"
where "params [] cf = []"
| "params (f#fs) cf = (f cf)#params fs cf"
lemma params_nth:
"i < length fs ⟹ (params fs cf)!i = (fs!i) cf"
by(induct fs arbitrary:i,auto,case_tac i,auto)
lemma [simp]:"length (params fs cf) = length fs"
by(induct fs) auto
fun transfer :: "('var,'val,'ret,'pname) edge_kind ⇒ (('var ⇀ 'val) × 'ret) list ⇒
(('var ⇀ 'val) × 'ret) list"
where "transfer (⇑f) (cf#cfs) = (f (fst cf),snd cf)#cfs"
| "transfer (Q)⇩√ (cf#cfs) = (cf#cfs)"
| "transfer (Q:r↪⇘p⇙fs) (cf#cfs) =
(let ins = THE ins. ∃outs. (p,ins,outs) ∈ set procs in
(Map.empty(ins [:=] params fs (fst cf)),r)#cf#cfs)"
| "transfer (Q↩⇘p⇙f )(cf#cfs) = (case cfs of [] ⇒ []
| cf'#cfs' ⇒ (f (fst cf) (fst cf'),snd cf')#cfs')"
| "transfer et [] = []"
fun transfers :: "('var,'val,'ret,'pname) edge_kind list ⇒ (('var ⇀ 'val) × 'ret) list ⇒
(('var ⇀ 'val) × 'ret) list"
where "transfers [] s = s"
| "transfers (et#ets) s = transfers ets (transfer et s)"
fun pred :: "('var,'val,'ret,'pname) edge_kind ⇒ (('var ⇀ 'val) × 'ret) list ⇒ bool"
where "pred (⇑f) (cf#cfs) = True"
| "pred (Q)⇩√ (cf#cfs) = Q (fst cf)"
| "pred (Q:r↪⇘p⇙fs) (cf#cfs) = Q (fst cf,r)"
| "pred (Q↩⇘p⇙f) (cf#cfs) = (Q cf ∧ cfs ≠ [])"
| "pred et [] = False"
fun preds :: "('var,'val,'ret,'pname) edge_kind list ⇒ (('var ⇀ 'val) × 'ret) list ⇒ bool"
where "preds [] s = True"
| "preds (et#ets) s = (pred et s ∧ preds ets (transfer et s))"
lemma transfers_split:
"(transfers (ets@ets') s) = (transfers ets' (transfers ets s))"
by(induct ets arbitrary:s) auto
lemma preds_split:
"(preds (ets@ets') s) = (preds ets s ∧ preds ets' (transfers ets s))"
by(induct ets arbitrary:s) auto
abbreviation state_val :: "(('var ⇀ 'val) × 'ret) list ⇒ 'var ⇀ 'val"
where "state_val s V ≡ (fst (hd s)) V"
subsubsection ‹‹valid_node››
definition valid_node :: "'node ⇒ bool"
where "valid_node n ≡
(∃a. valid_edge a ∧ (n = sourcenode a ∨ n = targetnode a))"
lemma [simp]: "valid_edge a ⟹ valid_node (sourcenode a)"
by(fastforce simp:valid_node_def)
lemma [simp]: "valid_edge a ⟹ valid_node (targetnode a)"
by(fastforce simp:valid_node_def)
subsection ‹CFG paths›
inductive path :: "'node ⇒ 'edge list ⇒ 'node ⇒ bool"
(‹_ -_→* _› [51,0,0] 80)
where
empty_path:"valid_node n ⟹ n -[]→* n"
| Cons_path:
"⟦n'' -as→* n'; valid_edge a; sourcenode a = n; targetnode a = n''⟧
⟹ n -a#as→* n'"
lemma path_valid_node:
assumes "n -as→* n'" shows "valid_node n" and "valid_node n'"
using ‹n -as→* n'›
by(induct rule:path.induct,auto)
lemma empty_path_nodes [dest]:"n -[]→* n' ⟹ n = n'"
by(fastforce elim:path.cases)
lemma path_valid_edges:"n -as→* n' ⟹ ∀a ∈ set as. valid_edge a"
by(induct rule:path.induct) auto
lemma path_edge:"valid_edge a ⟹ sourcenode a -[a]→* targetnode a"
by(fastforce intro:Cons_path empty_path)
lemma path_Append:"⟦n -as→* n''; n'' -as'→* n'⟧
⟹ n -as@as'→* n'"
by(induct rule:path.induct,auto intro:Cons_path)
lemma path_split:
assumes "n -as@a#as'→* n'"
shows "n -as→* sourcenode a" and "valid_edge a" and "targetnode a -as'→* n'"
using ‹n -as@a#as'→* n'›
proof(induct as arbitrary:n)
case Nil case 1
thus ?case by(fastforce elim:path.cases intro:empty_path)
next
case Nil case 2
thus ?case by(fastforce elim:path.cases intro:path_edge)
next
case Nil case 3
thus ?case by(fastforce elim:path.cases)
next
case (Cons ax asx)
note IH1 = ‹⋀n. n -asx@a#as'→* n' ⟹ n -asx→* sourcenode a›
note IH2 = ‹⋀n. n -asx@a#as'→* n' ⟹ valid_edge a›
note IH3 = ‹⋀n. n -asx@a#as'→* n' ⟹ targetnode a -as'→* n'›
{ case 1
hence "sourcenode ax = n" and "targetnode ax -asx@a#as'→* n'" and "valid_edge ax"
by(auto elim:path.cases)
from IH1[OF ‹ targetnode ax -asx@a#as'→* n'›]
have "targetnode ax -asx→* sourcenode a" .
with ‹sourcenode ax = n› ‹valid_edge ax› show ?case by(fastforce intro:Cons_path)
next
case 2 hence "targetnode ax -asx@a#as'→* n'" by(auto elim:path.cases)
from IH2[OF this] show ?case .
next
case 3 hence "targetnode ax -asx@a#as'→* n'" by(auto elim:path.cases)
from IH3[OF this] show ?case .
}
qed
lemma path_split_Cons:
assumes "n -as→* n'" and "as ≠ []"
obtains a' as' where "as = a'#as'" and "n = sourcenode a'"
and "valid_edge a'" and "targetnode a' -as'→* n'"
proof(atomize_elim)
from ‹as ≠ []› obtain a' as' where "as = a'#as'" by(cases as) auto
with ‹n -as→* n'› have "n -[]@a'#as'→* n'" by simp
hence "n -[]→* sourcenode a'" and "valid_edge a'" and "targetnode a' -as'→* n'"
by(rule path_split)+
from ‹n -[]→* sourcenode a'› have "n = sourcenode a'" by fast
with ‹as = a'#as'› ‹valid_edge a'› ‹targetnode a' -as'→* n'›
show "∃a' as'. as = a'#as' ∧ n = sourcenode a' ∧ valid_edge a' ∧
targetnode a' -as'→* n'"
by fastforce
qed
lemma path_split_snoc:
assumes "n -as→* n'" and "as ≠ []"
obtains a' as' where "as = as'@[a']" and "n -as'→* sourcenode a'"
and "valid_edge a'" and "n' = targetnode a'"
proof(atomize_elim)
from ‹as ≠ []› obtain a' as' where "as = as'@[a']" by(cases as rule:rev_cases) auto
with ‹n -as→* n'› have "n -as'@a'#[]→* n'" by simp
hence "n -as'→* sourcenode a'" and "valid_edge a'" and "targetnode a' -[]→* n'"
by(rule path_split)+
from ‹targetnode a' -[]→* n'› have "n' = targetnode a'" by fast
with ‹as = as'@[a']› ‹valid_edge a'› ‹n -as'→* sourcenode a'›
show "∃as' a'. as = as'@[a'] ∧ n -as'→* sourcenode a' ∧ valid_edge a' ∧
n' = targetnode a'"
by fastforce
qed
lemma path_split_second:
assumes "n -as@a#as'→* n'" shows "sourcenode a -a#as'→* n'"
proof -
from ‹n -as@a#as'→* n'› have "valid_edge a" and "targetnode a -as'→* n'"
by(auto intro:path_split)
thus ?thesis by(fastforce intro:Cons_path)
qed
lemma path_Entry_Cons:
assumes "(_Entry_) -as→* n'" and "n' ≠ (_Entry_)"
obtains n a where "sourcenode a = (_Entry_)" and "targetnode a = n"
and "n -tl as→* n'" and "valid_edge a" and "a = hd as"
proof(atomize_elim)
from ‹(_Entry_) -as→* n'› ‹n' ≠ (_Entry_)› have "as ≠ []"
by(cases as,auto elim:path.cases)
with ‹(_Entry_) -as→* n'› obtain a' as' where "as = a'#as'"
and "(_Entry_) = sourcenode a'" and "valid_edge a'" and "targetnode a' -as'→* n'"
by(erule path_split_Cons)
thus "∃a n. sourcenode a = (_Entry_) ∧ targetnode a = n ∧ n -tl as→* n' ∧
valid_edge a ∧ a = hd as"
by fastforce
qed
lemma path_det:
"⟦n -as→* n'; n -as→* n''⟧ ⟹ n' = n''"
proof(induct as arbitrary:n)
case Nil thus ?case by(auto elim:path.cases)
next
case (Cons a' as')
note IH = ‹⋀n. ⟦n -as'→* n'; n -as'→* n''⟧ ⟹ n' = n''›
from ‹n -a'#as'→* n'› have "targetnode a' -as'→* n'"
by(fastforce elim:path_split_Cons)
from ‹n -a'#as'→* n''› have "targetnode a' -as'→* n''"
by(fastforce elim:path_split_Cons)
from IH[OF ‹targetnode a' -as'→* n'› this] show ?thesis .
qed
definition
sourcenodes :: "'edge list ⇒ 'node list"
where "sourcenodes xs ≡ map sourcenode xs"
definition
kinds :: "'edge list ⇒ ('var,'val,'ret,'pname) edge_kind list"
where "kinds xs ≡ map kind xs"
definition
targetnodes :: "'edge list ⇒ 'node list"
where "targetnodes xs ≡ map targetnode xs"
lemma path_sourcenode:
"⟦n -as→* n'; as ≠ []⟧ ⟹ hd (sourcenodes as) = n"
by(fastforce elim:path_split_Cons simp:sourcenodes_def)
lemma path_targetnode:
"⟦n -as→* n'; as ≠ []⟧ ⟹ last (targetnodes as) = n'"
by(fastforce elim:path_split_snoc simp:targetnodes_def)
lemma sourcenodes_is_n_Cons_butlast_targetnodes:
"⟦n -as→* n'; as ≠ []⟧ ⟹
sourcenodes as = n#(butlast (targetnodes as))"
proof(induct as arbitrary:n)
case Nil thus ?case by simp
next
case (Cons a' as')
note IH = ‹⋀n. ⟦n -as'→* n'; as' ≠ []⟧
⟹ sourcenodes as' = n#(butlast (targetnodes as'))›
from ‹n -a'#as'→* n'› have "n = sourcenode a'" and "targetnode a' -as'→* n'"
by(auto elim:path_split_Cons)
show ?case
proof(cases "as' = []")
case True
with ‹targetnode a' -as'→* n'› have "targetnode a' = n'" by fast
with True ‹n = sourcenode a'› show ?thesis
by(simp add:sourcenodes_def targetnodes_def)
next
case False
from IH[OF ‹targetnode a' -as'→* n'› this]
have "sourcenodes as' = targetnode a' # butlast (targetnodes as')" .
with ‹n = sourcenode a'› False show ?thesis
by(simp add:sourcenodes_def targetnodes_def)
qed
qed
lemma targetnodes_is_tl_sourcenodes_App_n':
"⟦n -as→* n'; as ≠ []⟧ ⟹
targetnodes as = (tl (sourcenodes as))@[n']"
proof(induct as arbitrary:n' rule:rev_induct)
case Nil thus ?case by simp
next
case (snoc a' as')
note IH = ‹⋀n'. ⟦n -as'→* n'; as' ≠ []⟧
⟹ targetnodes as' = tl (sourcenodes as') @ [n']›
from ‹n -as'@[a']→* n'› have "n -as'→* sourcenode a'" and "n' = targetnode a'"
by(auto elim:path_split_snoc)
show ?case
proof(cases "as' = []")
case True
with ‹n -as'→* sourcenode a'› have "n = sourcenode a'" by fast
with True ‹n' = targetnode a'› show ?thesis
by(simp add:sourcenodes_def targetnodes_def)
next
case False
from IH[OF ‹n -as'→* sourcenode a'› this]
have "targetnodes as' = tl (sourcenodes as')@[sourcenode a']" .
with ‹n' = targetnode a'› False show ?thesis
by(simp add:sourcenodes_def targetnodes_def)
qed
qed
subsubsection ‹Intraprocedural paths›
definition intra_path :: "'node ⇒ 'edge list ⇒ 'node ⇒ bool"
(‹_ -_→⇩ι* _› [51,0,0] 80)
where "n -as→⇩ι* n' ≡ n -as→* n' ∧ (∀a ∈ set as. intra_kind(kind a))"
lemma intra_path_get_procs:
assumes "n -as→⇩ι* n'" shows "get_proc n = get_proc n'"
proof -
from ‹n -as→⇩ι* n'› have "n -as→* n'" and "∀a ∈ set as. intra_kind(kind a)"
by(simp_all add:intra_path_def)
thus ?thesis
proof(induct as arbitrary:n)
case Nil thus ?case by fastforce
next
case (Cons a' as')
note IH = ‹⋀n. ⟦n -as'→* n'; ∀a∈set as'. intra_kind (kind a)⟧
⟹ get_proc n = get_proc n'›
from ‹∀a∈set (a'#as'). intra_kind (kind a)›
have "intra_kind(kind a')" and "∀a∈set as'. intra_kind (kind a)" by simp_all
from ‹n -a'#as'→* n'› have "sourcenode a' = n" and "valid_edge a'"
and "targetnode a' -as'→* n'" by(auto elim:path.cases)
from IH[OF ‹targetnode a' -as'→* n'› ‹∀a∈set as'. intra_kind (kind a)›]
have "get_proc (targetnode a') = get_proc n'" .
from ‹valid_edge a'› ‹intra_kind(kind a')›
have "get_proc (sourcenode a') = get_proc (targetnode a')"
by(rule get_proc_intra)
with ‹sourcenode a' = n› ‹get_proc (targetnode a') = get_proc n'›
show ?case by simp
qed
qed
lemma intra_path_Append:
"⟦n -as→⇩ι* n''; n'' -as'→⇩ι* n'⟧ ⟹ n -as@as'→⇩ι* n'"
by(fastforce intro:path_Append simp:intra_path_def)
lemma get_proc_get_return_edges:
assumes "valid_edge a" and "a' ∈ get_return_edges a"
shows "get_proc(targetnode a) = get_proc(sourcenode a')"
proof -
from ‹valid_edge a› ‹a' ∈ get_return_edges a›
obtain a'' where "valid_edge a''" and "sourcenode a'' = targetnode a"
and "targetnode a'' = sourcenode a'" and "kind a'' = (λcf. False)⇩√"
by(fastforce dest:intra_proc_additional_edge)
from ‹valid_edge a''› ‹kind a'' = (λcf. False)⇩√›
have "get_proc(sourcenode a'') = get_proc(targetnode a'')"
by(fastforce intro:get_proc_intra simp:intra_kind_def)
with ‹sourcenode a'' = targetnode a› ‹targetnode a'' = sourcenode a'›
show ?thesis by simp
qed
subsubsection ‹Valid paths›
declare conj_cong[fundef_cong]
fun valid_path_aux :: "'edge list ⇒ 'edge list ⇒ bool"
where "valid_path_aux cs [] ⟷ True"
| "valid_path_aux cs (a#as) ⟷
(case (kind a) of Q:r↪⇘p⇙fs ⇒ valid_path_aux (a#cs) as
| Q↩⇘p⇙f ⇒ case cs of [] ⇒ valid_path_aux [] as
| c'#cs' ⇒ a ∈ get_return_edges c' ∧
valid_path_aux cs' as
| _ ⇒ valid_path_aux cs as)"
lemma vpa_induct [consumes 1,case_names vpa_empty vpa_intra vpa_Call vpa_ReturnEmpty
vpa_ReturnCons]:
assumes major: "valid_path_aux xs ys"
and rules: "⋀cs. P cs []"
"⋀cs a as. ⟦intra_kind(kind a); valid_path_aux cs as; P cs as⟧ ⟹ P cs (a#as)"
"⋀cs a as Q r p fs. ⟦kind a = Q:r↪⇘p⇙fs; valid_path_aux (a#cs) as; P (a#cs) as⟧
⟹ P cs (a#as)"
"⋀cs a as Q p f. ⟦kind a = Q↩⇘p⇙f; cs = []; valid_path_aux [] as; P [] as⟧
⟹ P cs (a#as)"
"⋀cs a as Q p f c' cs' . ⟦kind a = Q↩⇘p⇙f; cs = c'#cs'; valid_path_aux cs' as;
a ∈ get_return_edges c'; P cs' as⟧
⟹ P cs (a#as)"
shows "P xs ys"
using major
apply(induct ys arbitrary: xs)
by(auto intro:rules split:edge_kind.split_asm list.split_asm simp:intra_kind_def)
lemma valid_path_aux_intra_path:
"∀a ∈ set as. intra_kind(kind a) ⟹ valid_path_aux cs as"
by(induct as,auto simp:intra_kind_def)
lemma valid_path_aux_callstack_prefix:
"valid_path_aux (cs@cs') as ⟹ valid_path_aux cs as"
proof(induct "cs@cs'" as arbitrary:cs cs' rule:vpa_induct)
case vpa_empty thus ?case by simp
next
case (vpa_intra a as)
hence "valid_path_aux cs as" by simp
with ‹intra_kind (kind a)› show ?case by(cases "kind a",auto simp:intra_kind_def)
next
case (vpa_Call a as Q r p fs cs'' cs')
note IH = ‹⋀xs ys. a#cs''@cs' = xs@ys ⟹ valid_path_aux xs as›
have "a#cs''@cs' = (a#cs'')@cs'" by simp
from IH[OF this] have "valid_path_aux (a#cs'') as" .
with ‹kind a = Q:r↪⇘p⇙fs› show ?case by simp
next
case (vpa_ReturnEmpty a as Q p f cs'' cs')
hence "valid_path_aux cs'' as" by simp
with ‹kind a = Q↩⇘p⇙f› ‹cs''@cs' = []› show ?case by simp
next
case (vpa_ReturnCons a as Q p f c' cs' csx csx')
note IH = ‹⋀xs ys. cs' = xs@ys ⟹ valid_path_aux xs as›
from ‹csx@csx' = c'#cs'›
have "csx = [] ∧ csx' = c'#cs' ∨ (∃zs. csx = c'#zs ∧ zs@csx' = cs')"
by(simp add:append_eq_Cons_conv)
thus ?case
proof
assume "csx = [] ∧ csx' = c'#cs'"
hence "csx = []" and "csx' = c'#cs'" by simp_all
from ‹csx' = c'#cs'› have "cs' = []@tl csx'" by simp
from IH[OF this] have "valid_path_aux [] as" .
with ‹csx = []› ‹kind a = Q↩⇘p⇙f› show ?thesis by simp
next
assume "∃zs. csx = c'#zs ∧ zs@csx' = cs'"
then obtain zs where "csx = c'#zs" and "cs' = zs@csx'" by auto
from IH[OF ‹cs' = zs@csx'›] have "valid_path_aux zs as" .
with ‹csx = c'#zs› ‹kind a = Q↩⇘p⇙f› ‹a ∈ get_return_edges c'›
show ?thesis by simp
qed
qed
fun upd_cs :: "'edge list ⇒ 'edge list ⇒ 'edge list"
where "upd_cs cs [] = cs"
| "upd_cs cs (a#as) =
(case (kind a) of Q:r↪⇘p⇙fs ⇒ upd_cs (a#cs) as
| Q↩⇘p⇙f ⇒ case cs of [] ⇒ upd_cs cs as
| c'#cs' ⇒ upd_cs cs' as
| _ ⇒ upd_cs cs as)"
lemma upd_cs_empty [dest]:
"upd_cs cs [] = [] ⟹ cs = []"
by(cases cs) auto
lemma upd_cs_intra_path:
"∀a ∈ set as. intra_kind(kind a) ⟹ upd_cs cs as = cs"
by(induct as,auto simp:intra_kind_def)
lemma upd_cs_Append:
"⟦upd_cs cs as = cs'; upd_cs cs' as' = cs''⟧ ⟹ upd_cs cs (as@as') = cs''"
by(induct as arbitrary:cs,auto split:edge_kind.split list.split)
lemma upd_cs_empty_split:
assumes "upd_cs cs as = []" and "cs ≠ []" and "as ≠ []"
obtains xs ys where "as = xs@ys" and "xs ≠ []" and "upd_cs cs xs = []"
and "∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs xs' ≠ []"
and "upd_cs [] ys = []"
proof(atomize_elim)
from ‹upd_cs cs as = []› ‹cs ≠ []› ‹as ≠ []›
show "∃xs ys. as = xs@ys ∧ xs ≠ [] ∧ upd_cs cs xs = [] ∧
(∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs xs' ≠ []) ∧
upd_cs [] ys = []"
proof(induct as arbitrary:cs)
case Nil thus ?case by simp
next
case (Cons a' as')
note IH = ‹⋀cs. ⟦upd_cs cs as' = []; cs ≠ []; as' ≠ []⟧
⟹ ∃xs ys. as' = xs@ys ∧ xs ≠ [] ∧ upd_cs cs xs = [] ∧
(∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs xs' ≠ []) ∧
upd_cs [] ys = []›
show ?case
proof(cases "kind a'" rule:edge_kind_cases)
case Intra
with ‹upd_cs cs (a'#as') = []› have "upd_cs cs as' = []"
by(fastforce simp:intra_kind_def)
with ‹cs ≠ []› have "as' ≠ []" by fastforce
from IH[OF ‹upd_cs cs as' = []› ‹cs ≠ []› this] obtain xs ys where "as' = xs@ys"
and "xs ≠ []" and "upd_cs cs xs = []" and "upd_cs [] ys = []"
and "∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs xs' ≠ []" by blast
from ‹upd_cs cs xs = []› Intra have "upd_cs cs (a'#xs) = []"
by(fastforce simp:intra_kind_def)
from ‹∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs xs' ≠ []› ‹xs ≠ []› Intra
have "∀xs' ys'. a'#xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs xs' ≠ []"
apply auto
apply(case_tac xs') apply(auto simp:intra_kind_def)
by(erule_tac x="[]" in allE,fastforce)+
with ‹as' = xs@ys› ‹upd_cs cs (a'#xs) = []› ‹upd_cs [] ys = []›
show ?thesis apply(rule_tac x="a'#xs" in exI) by fastforce
next
case (Call Q p f)
with ‹upd_cs cs (a'#as') = []› have "upd_cs (a'#cs) as' = []" by simp
with ‹cs ≠ []› have "as' ≠ []" by fastforce
from IH[OF ‹upd_cs (a'#cs) as' = []› _ this] obtain xs ys where "as' = xs@ys"
and "xs ≠ []" and "upd_cs (a'#cs) xs = []" and "upd_cs [] ys = []"
and "∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs (a'#cs) xs' ≠ []" by blast
from ‹upd_cs (a'#cs) xs = []› Call have "upd_cs cs (a'#xs) = []" by simp
from ‹∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs (a'#cs) xs' ≠ []›
‹xs ≠ []› ‹cs ≠ []› Call
have "∀xs' ys'. a'#xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs xs' ≠ []"
by auto(case_tac xs',auto)
with ‹as' = xs@ys› ‹upd_cs cs (a'#xs) = []› ‹upd_cs [] ys = []›
show ?thesis apply(rule_tac x="a'#xs" in exI) by fastforce
next
case (Return Q p f)
with ‹upd_cs cs (a'#as') = []› ‹cs ≠ []› obtain c' cs' where "cs = c'#cs'"
and "upd_cs cs' as' = []" by(cases cs) auto
show ?thesis
proof(cases "cs' = []")
case True
with ‹cs = c'#cs'› ‹upd_cs cs' as' = []› Return show ?thesis
apply(rule_tac x="[a']" in exI) apply clarsimp
by(case_tac xs') auto
next
case False
with ‹upd_cs cs' as' = []› have "as' ≠ []" by fastforce
from IH[OF ‹upd_cs cs' as' = []› False this] obtain xs ys where "as' = xs@ys"
and "xs ≠ []" and "upd_cs cs' xs = []" and "upd_cs [] ys = []"
and "∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs' xs' ≠ []" by blast
from ‹upd_cs cs' xs = []› ‹cs = c'#cs'› Return have "upd_cs cs (a'#xs) = []"
by simp
from ‹∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs' xs' ≠ []›
‹xs ≠ []› ‹cs = c'#cs'› Return
have "∀xs' ys'. a'#xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs cs xs' ≠ []"
by auto(case_tac xs',auto)
with ‹as' = xs@ys› ‹upd_cs cs (a'#xs) = []› ‹upd_cs [] ys = []›
show ?thesis apply(rule_tac x="a'#xs" in exI) by fastforce
qed
qed
qed
qed
lemma upd_cs_snoc_Return_Cons:
assumes "kind a = Q↩⇘p⇙f"
shows "upd_cs cs as = c'#cs' ⟹ upd_cs cs (as@[a]) = cs'"
proof(induct as arbitrary:cs)
case Nil
with ‹kind a = Q↩⇘p⇙f› have "upd_cs cs [a] = cs'" by simp
thus ?case by simp
next
case (Cons a' as')
note IH = ‹⋀cs. upd_cs cs as' = c'#cs' ⟹ upd_cs cs (as'@[a]) = cs'›
show ?case
proof(cases "kind a'" rule:edge_kind_cases)
case Intra
with ‹upd_cs cs (a'#as') = c'#cs'›
have "upd_cs cs as' = c'#cs'" by(fastforce simp:intra_kind_def)
from IH[OF this] have "upd_cs cs (as'@[a]) = cs'" .
with Intra show ?thesis by(fastforce simp:intra_kind_def)
next
case Call
with ‹upd_cs cs (a'#as') = c'#cs'›
have "upd_cs (a'#cs) as' = c'#cs'" by simp
from IH[OF this] have "upd_cs (a'#cs) (as'@[a]) = cs'" .
with Call show ?thesis by simp
next
case Return
show ?thesis
proof(cases cs)
case Nil
with ‹upd_cs cs (a'#as') = c'#cs'› Return
have "upd_cs cs as' = c'#cs'" by simp
from IH[OF this] have "upd_cs cs (as'@[a]) = cs'" .
with Nil Return show ?thesis by simp
next
case (Cons cx csx)
with ‹upd_cs cs (a'#as') = c'#cs'› Return
have "upd_cs csx as' = c'#cs'" by simp
from IH[OF this] have "upd_cs csx (as'@[a]) = cs'" .
with Cons Return show ?thesis by simp
qed
qed
qed
lemma upd_cs_snoc_Call:
assumes "kind a = Q:r↪⇘p⇙fs"
shows "upd_cs cs (as@[a]) = a#(upd_cs cs as)"
proof(induct as arbitrary:cs)
case Nil
with ‹kind a = Q:r↪⇘p⇙fs› show ?case by simp
next
case (Cons a' as')
note IH = ‹⋀cs. upd_cs cs (as'@[a]) = a#upd_cs cs as'›
show ?case
proof(cases "kind a'" rule:edge_kind_cases)
case Intra
with IH[of cs] show ?thesis by(fastforce simp:intra_kind_def)
next
case Call
with IH[of "a'#cs"] show ?thesis by simp
next
case Return
show ?thesis
proof(cases cs)
case Nil
with IH[of "[]"] Return show ?thesis by simp
next
case (Cons cx csx)
with IH[of csx] Return show ?thesis by simp
qed
qed
qed
lemma valid_path_aux_split:
assumes "valid_path_aux cs (as@as')"
shows "valid_path_aux cs as" and "valid_path_aux (upd_cs cs as) as'"
using ‹valid_path_aux cs (as@as')›
proof(induct cs "as@as'" arbitrary:as as' rule:vpa_induct)
case (vpa_intra cs a as as'')
note IH1 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_aux cs xs›
note IH2 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_aux (upd_cs cs xs) ys›
{ case 1
from vpa_intra
have "as'' = [] ∧ a#as = as' ∨ (∃xs. a#xs = as'' ∧ as = xs@as')"
by(simp add:Cons_eq_append_conv)
thus ?case
proof
assume "as'' = [] ∧ a#as = as'"
thus ?thesis by simp
next
assume "∃xs. a#xs = as'' ∧ as = xs@as'"
then obtain xs where "a#xs = as''" and "as = xs@as'" by auto
from IH1[OF ‹as = xs@as'›] have "valid_path_aux cs xs" .
with ‹a#xs = as''› ‹intra_kind (kind a)›
show ?thesis by(fastforce simp:intra_kind_def)
qed
next
case 2
from vpa_intra
have "as'' = [] ∧ a#as = as' ∨ (∃xs. a#xs = as'' ∧ as = xs@as')"
by(simp add:Cons_eq_append_conv)
thus ?case
proof
assume "as'' = [] ∧ a#as = as'"
hence "as = []@tl as'" by(cases as') auto
from IH2[OF this] have "valid_path_aux (upd_cs cs []) (tl as')" by simp
with ‹as'' = [] ∧ a#as = as'› ‹intra_kind (kind a)›
show ?thesis by(fastforce simp:intra_kind_def)
next
assume "∃xs. a#xs = as'' ∧ as = xs@as'"
then obtain xs where "a#xs = as''" and "as = xs@as'" by auto
from IH2[OF ‹as = xs@as'›] have "valid_path_aux (upd_cs cs xs) as'" .
from ‹a#xs = as''› ‹intra_kind (kind a)›
have "upd_cs cs xs = upd_cs cs as''" by(fastforce simp:intra_kind_def)
with ‹valid_path_aux (upd_cs cs xs) as'›
show ?thesis by simp
qed
}
next
case (vpa_Call cs a as Q r p fs as'')
note IH1 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_aux (a#cs) xs›
note IH2 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_aux (upd_cs (a#cs) xs) ys›
{ case 1
from vpa_Call
have "as'' = [] ∧ a#as = as' ∨ (∃xs. a#xs = as'' ∧ as = xs@as')"
by(simp add:Cons_eq_append_conv)
thus ?case
proof
assume "as'' = [] ∧ a#as = as'"
thus ?thesis by simp
next
assume "∃xs. a#xs = as'' ∧ as = xs@as'"
then obtain xs where "a#xs = as''" and "as = xs@as'" by auto
from IH1[OF ‹as = xs@as'›] have "valid_path_aux (a#cs) xs" .
with ‹a#xs = as''›[THEN sym] ‹kind a = Q:r↪⇘p⇙fs›
show ?thesis by simp
qed
next
case 2
from vpa_Call
have "as'' = [] ∧ a#as = as' ∨ (∃xs. a#xs = as'' ∧ as = xs@as')"
by(simp add:Cons_eq_append_conv)
thus ?case
proof
assume "as'' = [] ∧ a#as = as'"
hence "as = []@tl as'" by(cases as') auto
from IH2[OF this] have "valid_path_aux (upd_cs (a#cs) []) (tl as')" .
with ‹as'' = [] ∧ a#as = as'› ‹kind a = Q:r↪⇘p⇙fs›
show ?thesis by clarsimp
next
assume "∃xs. a#xs = as'' ∧ as = xs@as'"
then obtain xs where "a#xs = as''" and "as = xs@as'" by auto
from IH2[OF ‹as = xs@as'›] have "valid_path_aux (upd_cs (a # cs) xs) as'" .
with ‹a#xs = as''›[THEN sym] ‹kind a = Q:r↪⇘p⇙fs›
show ?thesis by simp
qed
}
next
case (vpa_ReturnEmpty cs a as Q p f as'')
note IH1 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_aux [] xs›
note IH2 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_aux (upd_cs [] xs) ys›
{ case 1
from vpa_ReturnEmpty
have "as'' = [] ∧ a#as = as' ∨ (∃xs. a#xs = as'' ∧ as = xs@as')"
by(simp add:Cons_eq_append_conv)
thus ?case
proof
assume "as'' = [] ∧ a#as = as'"
thus ?thesis by simp
next
assume "∃xs. a#xs = as'' ∧ as = xs@as'"
then obtain xs where "a#xs = as''" and "as = xs@as'" by auto
from IH1[OF ‹as = xs@as'›] have "valid_path_aux [] xs" .
with ‹a#xs = as''›[THEN sym] ‹kind a = Q↩⇘p⇙f› ‹cs = []›
show ?thesis by simp
qed
next
case 2
from vpa_ReturnEmpty
have "as'' = [] ∧ a#as = as' ∨ (∃xs. a#xs = as'' ∧ as = xs@as')"
by(simp add:Cons_eq_append_conv)
thus ?case
proof
assume "as'' = [] ∧ a#as = as'"
hence "as = []@tl as'" by(cases as') auto
from IH2[OF this] have "valid_path_aux [] (tl as')" by simp
with ‹as'' = [] ∧ a#as = as'› ‹kind a = Q↩⇘p⇙f› ‹cs = []›
show ?thesis by fastforce
next
assume "∃xs. a#xs = as'' ∧ as = xs@as'"
then obtain xs where "a#xs = as''" and "as = xs@as'" by auto
from IH2[OF ‹as = xs@as'›] have "valid_path_aux (upd_cs [] xs) as'" .
from ‹a#xs = as''›[THEN sym] ‹kind a = Q↩⇘p⇙f› ‹cs = []›
have "upd_cs [] xs = upd_cs cs as''" by simp
with ‹valid_path_aux (upd_cs [] xs) as'› show ?thesis by simp
qed
}
next
case (vpa_ReturnCons cs a as Q p f c' cs' as'')
note IH1 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_aux cs' xs›
note IH2 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_aux (upd_cs cs' xs) ys›
{ case 1
from vpa_ReturnCons
have "as'' = [] ∧ a#as = as' ∨ (∃xs. a#xs = as'' ∧ as = xs@as')"
by(simp add:Cons_eq_append_conv)
thus ?case
proof
assume "as'' = [] ∧ a#as = as'"
thus ?thesis by simp
next
assume "∃xs. a#xs = as'' ∧ as = xs@as'"
then obtain xs where "a#xs = as''" and "as = xs@as'" by auto
from IH1[OF ‹as = xs@as'›] have "valid_path_aux cs' xs" .
with ‹a#xs = as''›[THEN sym] ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
‹a ∈ get_return_edges c'›
show ?thesis by simp
qed
next
case 2
from vpa_ReturnCons
have "as'' = [] ∧ a#as = as' ∨ (∃xs. a#xs = as'' ∧ as = xs@as')"
by(simp add:Cons_eq_append_conv)
thus ?case
proof
assume "as'' = [] ∧ a#as = as'"
hence "as = []@tl as'" by(cases as') auto
from IH2[OF this] have "valid_path_aux (upd_cs cs' []) (tl as')" .
with ‹as'' = [] ∧ a#as = as'› ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
‹a ∈ get_return_edges c'›
show ?thesis by fastforce
next
assume "∃xs. a#xs = as'' ∧ as = xs@as'"
then obtain xs where "a#xs = as''" and "as = xs@as'" by auto
from IH2[OF ‹as = xs@as'›] have "valid_path_aux (upd_cs cs' xs) as'" .
from ‹a#xs = as''›[THEN sym] ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
have "upd_cs cs' xs = upd_cs cs as''" by simp
with ‹valid_path_aux (upd_cs cs' xs) as'› show ?thesis by simp
qed
}
qed simp_all
lemma valid_path_aux_Append:
"⟦valid_path_aux cs as; valid_path_aux (upd_cs cs as) as'⟧
⟹ valid_path_aux cs (as@as')"
by(induct rule:vpa_induct,auto simp:intra_kind_def)
lemma vpa_snoc_Call:
assumes "kind a = Q:r↪⇘p⇙fs"
shows "valid_path_aux cs as ⟹ valid_path_aux cs (as@[a])"
proof(induct rule:vpa_induct)
case (vpa_empty cs)
from ‹kind a = Q:r↪⇘p⇙fs› have "valid_path_aux cs [a]" by simp
thus ?case by simp
next
case (vpa_intra cs a' as')
from ‹valid_path_aux cs (as'@[a])› ‹intra_kind (kind a')›
have "valid_path_aux cs (a'#(as'@[a]))"
by(fastforce simp:intra_kind_def)
thus ?case by simp
next
case (vpa_Call cs a' as' Q' r' p' fs')
from ‹valid_path_aux (a'#cs) (as'@[a])› ‹kind a' = Q':r'↪⇘p'⇙fs'›
have "valid_path_aux cs (a'#(as'@[a]))" by simp
thus ?case by simp
next
case (vpa_ReturnEmpty cs a' as' Q' p' f')
from ‹valid_path_aux [] (as'@[a])› ‹kind a' = Q'↩⇘p'⇙f'› ‹cs = []›
have "valid_path_aux cs (a'#(as'@[a]))" by simp
thus ?case by simp
next
case (vpa_ReturnCons cs a' as' Q' p' f' c' cs')
from ‹valid_path_aux cs' (as'@[a])› ‹kind a' = Q'↩⇘p'⇙f'› ‹cs = c'#cs'›
‹a' ∈ get_return_edges c'›
have "valid_path_aux cs (a'#(as'@[a]))" by simp
thus ?case by simp
qed
definition valid_path :: "'edge list ⇒ bool"
where "valid_path as ≡ valid_path_aux [] as"
lemma valid_path_aux_valid_path:
"valid_path_aux cs as ⟹ valid_path as"
by(fastforce intro:valid_path_aux_callstack_prefix simp:valid_path_def)
lemma valid_path_split:
assumes "valid_path (as@as')" shows "valid_path as" and "valid_path as'"
using ‹valid_path (as@as')›
apply(auto simp:valid_path_def)
apply(erule valid_path_aux_split)
apply(drule valid_path_aux_split(2))
by(fastforce intro:valid_path_aux_callstack_prefix)
definition valid_path' :: "'node ⇒ 'edge list ⇒ 'node ⇒ bool"
(‹_ -_→⇩√* _› [51,0,0] 80)
where vp_def:"n -as→⇩√* n' ≡ n -as→* n' ∧ valid_path as"
lemma intra_path_vp:
assumes "n -as→⇩ι* n'" shows "n -as→⇩√* n'"
proof -
from ‹n -as→⇩ι* n'› have "n -as→* n'" and "∀a ∈ set as. intra_kind(kind a)"
by(simp_all add:intra_path_def)
from ‹∀a ∈ set as. intra_kind(kind a)› have "valid_path_aux [] as"
by(rule valid_path_aux_intra_path)
thus ?thesis using ‹n -as→* n'› by(simp add:vp_def valid_path_def)
qed
lemma vp_split_Cons:
assumes "n -as→⇩√* n'" and "as ≠ []"
obtains a' as' where "as = a'#as'" and "n = sourcenode a'"
and "valid_edge a'" and "targetnode a' -as'→⇩√* n'"
proof(atomize_elim)
from ‹n -as→⇩√* n'› ‹as ≠ []› obtain a' as' where "as = a'#as'"
and "n = sourcenode a'" and "valid_edge a'" and "targetnode a' -as'→* n'"
by(fastforce elim:path_split_Cons simp:vp_def)
from ‹n -as→⇩√* n'› have "valid_path as" by(simp add:vp_def)
from ‹as = a'#as'› have "as = [a']@as'" by simp
with ‹valid_path as› have "valid_path ([a']@as')" by simp
hence "valid_path as'" by(rule valid_path_split)
with ‹targetnode a' -as'→* n'› have "targetnode a' -as'→⇩√* n'" by(simp add:vp_def)
with ‹as = a'#as'› ‹n = sourcenode a'› ‹valid_edge a'›
show "∃a' as'. as = a'#as' ∧ n = sourcenode a' ∧ valid_edge a' ∧
targetnode a' -as'→⇩√* n'" by blast
qed
lemma vp_split_snoc:
assumes "n -as→⇩√* n'" and "as ≠ []"
obtains a' as' where "as = as'@[a']" and "n -as'→⇩√* sourcenode a'"
and "valid_edge a'" and "n' = targetnode a'"
proof(atomize_elim)
from ‹n -as→⇩√* n'› ‹as ≠ []› obtain a' as' where "as = as'@[a']"
and "n -as'→* sourcenode a'" and "valid_edge a'" and "n' = targetnode a'"
by(clarsimp simp:vp_def)(erule path_split_snoc,auto)
from ‹n -as→⇩√* n'› ‹as = as'@[a']› have "valid_path (as'@[a'])" by(simp add:vp_def)
hence "valid_path as'" by(rule valid_path_split)
with ‹n -as'→* sourcenode a'› have "n -as'→⇩√* sourcenode a'" by(simp add:vp_def)
with ‹as = as'@[a']› ‹valid_edge a'› ‹n' = targetnode a'›
show "∃as' a'. as = as'@[a'] ∧ n -as'→⇩√* sourcenode a' ∧ valid_edge a' ∧
n' = targetnode a'"
by blast
qed
lemma vp_split:
assumes "n -as@a#as'→⇩√* n'"
shows "n -as→⇩√* sourcenode a" and "valid_edge a" and "targetnode a -as'→⇩√* n'"
proof -
from ‹n -as@a#as'→⇩√* n'› have "n -as→* sourcenode a" and "valid_edge a"
and "targetnode a -as'→* n'"
by(auto intro:path_split simp:vp_def)
from ‹n -as@a#as'→⇩√* n'› have "valid_path (as@a#as')" by(simp add:vp_def)
hence "valid_path as" and "valid_path (a#as')" by(auto intro:valid_path_split)
from ‹valid_path (a#as')› have "valid_path ([a]@as')" by simp
hence "valid_path as'" by(rule valid_path_split)
with ‹n -as→* sourcenode a› ‹valid_path as› ‹valid_edge a› ‹targetnode a -as'→* n'›
show "n -as→⇩√* sourcenode a" "valid_edge a" "targetnode a -as'→⇩√* n'"
by(auto simp:vp_def)
qed
lemma vp_split_second:
assumes "n -as@a#as'→⇩√* n'" shows "sourcenode a -a#as'→⇩√* n'"
proof -
from ‹n -as@a#as'→⇩√* n'› have "sourcenode a -a#as'→* n'"
by(fastforce elim:path_split_second simp:vp_def)
from ‹n -as@a#as'→⇩√* n'› have "valid_path (as@a#as')" by(simp add:vp_def)
hence "valid_path (a#as')" by(rule valid_path_split)
with ‹sourcenode a -a#as'→* n'› show ?thesis by(simp add:vp_def)
qed
function valid_path_rev_aux :: "'edge list ⇒ 'edge list ⇒ bool"
where "valid_path_rev_aux cs [] ⟷ True"
| "valid_path_rev_aux cs (as@[a]) ⟷
(case (kind a) of Q↩⇘p⇙f ⇒ valid_path_rev_aux (a#cs) as
| Q:r↪⇘p⇙fs ⇒ case cs of [] ⇒ valid_path_rev_aux [] as
| c'#cs' ⇒ c' ∈ get_return_edges a ∧
valid_path_rev_aux cs' as
| _ ⇒ valid_path_rev_aux cs as)"
by auto(case_tac b rule:rev_cases,auto)
termination by lexicographic_order
lemma vpra_induct [consumes 1,case_names vpra_empty vpra_intra vpra_Return
vpra_CallEmpty vpra_CallCons]:
assumes major: "valid_path_rev_aux xs ys"
and rules: "⋀cs. P cs []"
"⋀cs a as. ⟦intra_kind(kind a); valid_path_rev_aux cs as; P cs as⟧
⟹ P cs (as@[a])"
"⋀cs a as Q p f. ⟦kind a = Q↩⇘p⇙f; valid_path_rev_aux (a#cs) as; P (a#cs) as⟧
⟹ P cs (as@[a])"
"⋀cs a as Q r p fs. ⟦kind a = Q:r↪⇘p⇙fs; cs = []; valid_path_rev_aux [] as;
P [] as⟧ ⟹ P cs (as@[a])"
"⋀cs a as Q r p fs c' cs'. ⟦kind a = Q:r↪⇘p⇙fs; cs = c'#cs';
valid_path_rev_aux cs' as; c' ∈ get_return_edges a; P cs' as⟧
⟹ P cs (as@[a])"
shows "P xs ys"
using major
apply(induct ys arbitrary:xs rule:rev_induct)
by(auto intro:rules split:edge_kind.split_asm list.split_asm simp:intra_kind_def)
lemma vpra_callstack_prefix:
"valid_path_rev_aux (cs@cs') as ⟹ valid_path_rev_aux cs as"
proof(induct "cs@cs'" as arbitrary:cs cs' rule:vpra_induct)
case vpra_empty thus ?case by simp
next
case (vpra_intra a as)
hence "valid_path_rev_aux cs as" by simp
with ‹intra_kind (kind a)› show ?case by(fastforce simp:intra_kind_def)
next
case (vpra_Return a as Q p f)
note IH = ‹⋀ds ds'. a#cs@cs' = ds@ds' ⟹ valid_path_rev_aux ds as›
have "a#cs@cs' = (a#cs)@cs'" by simp
from IH[OF this] have "valid_path_rev_aux (a#cs) as" .
with ‹kind a = Q↩⇘p⇙f› show ?case by simp
next
case (vpra_CallEmpty a as Q r p fs)
hence "valid_path_rev_aux cs as" by simp
with ‹kind a = Q:r↪⇘p⇙fs› ‹cs@cs' = []› show ?case by simp
next
case (vpra_CallCons a as Q r p fs c' csx)
note IH = ‹⋀cs cs'. csx = cs@cs' ⟹ valid_path_rev_aux cs as›
from ‹cs@cs' = c'#csx›
have "(cs = [] ∧ cs' = c'#csx) ∨ (∃zs. cs = c'#zs ∧ zs@cs' = csx)"
by(simp add:append_eq_Cons_conv)
thus ?case
proof
assume "cs = [] ∧ cs' = c'#csx"
hence "cs = []" and "cs' = c'#csx" by simp_all
from ‹cs' = c'#csx› have "csx = []@tl cs'" by simp
from IH[OF this] have "valid_path_rev_aux [] as" .
with ‹cs = []› ‹kind a = Q:r↪⇘p⇙fs› show ?thesis by simp
next
assume "∃zs. cs = c'#zs ∧ zs@cs' = csx"
then obtain zs where "cs = c'#zs" and "csx = zs@cs'" by auto
from IH[OF ‹csx = zs@cs'›] have "valid_path_rev_aux zs as" .
with ‹cs = c'#zs› ‹kind a = Q:r↪⇘p⇙fs› ‹c' ∈ get_return_edges a› show ?thesis by simp
qed
qed
function upd_rev_cs :: "'edge list ⇒ 'edge list ⇒ 'edge list"
where "upd_rev_cs cs [] = cs"
| "upd_rev_cs cs (as@[a]) =
(case (kind a) of Q↩⇘p⇙f ⇒ upd_rev_cs (a#cs) as
| Q:r↪⇘p⇙fs ⇒ case cs of [] ⇒ upd_rev_cs cs as
| c'#cs' ⇒ upd_rev_cs cs' as
| _ ⇒ upd_rev_cs cs as)"
by auto(case_tac b rule:rev_cases,auto)
termination by lexicographic_order
lemma upd_rev_cs_empty [dest]:
"upd_rev_cs cs [] = [] ⟹ cs = []"
by(cases cs) auto
lemma valid_path_rev_aux_split:
assumes "valid_path_rev_aux cs (as@as')"
shows "valid_path_rev_aux cs as'" and "valid_path_rev_aux (upd_rev_cs cs as') as"
using ‹valid_path_rev_aux cs (as@as')›
proof(induct cs "as@as'" arbitrary:as as' rule:vpra_induct)
case (vpra_intra cs a as as'')
note IH1 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_rev_aux cs ys›
note IH2 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_rev_aux (upd_rev_cs cs ys) xs›
{ case 1
from vpra_intra
have "as' = [] ∧ as@[a] = as'' ∨ (∃xs. as = as''@xs ∧ xs@[a] = as')"
by(cases as' rule:rev_cases) auto
thus ?case
proof
assume "as' = [] ∧ as@[a] = as''"
thus ?thesis by simp
next
assume "∃xs. as = as''@xs ∧ xs@[a] = as'"
then obtain xs where "as = as''@xs" and "xs@[a] = as'" by auto
from IH1[OF ‹as = as''@xs›] have "valid_path_rev_aux cs xs" .
with ‹xs@[a] = as'› ‹intra_kind (kind a)›
show ?thesis by(fastforce simp:intra_kind_def)
qed
next
case 2
from vpra_intra
have "as' = [] ∧ as@[a] = as'' ∨ (∃xs. as = as''@xs ∧ xs@[a] = as')"
by(cases as' rule:rev_cases) auto
thus ?case
proof
assume "as' = [] ∧ as@[a] = as''"
hence "as = butlast as''@[]" by(cases as) auto
from IH2[OF this] have "valid_path_rev_aux (upd_rev_cs cs []) (butlast as'')" .
with ‹as' = [] ∧ as@[a] = as''› ‹intra_kind (kind a)›
show ?thesis by(fastforce simp:intra_kind_def)
next
assume "∃xs. as = as''@xs ∧ xs@[a] = as'"
then obtain xs where "as = as''@xs" and "xs@[a] = as'" by auto
from IH2[OF ‹as = as''@xs›] have "valid_path_rev_aux (upd_rev_cs cs xs) as''" .
from ‹xs@[a] = as'› ‹intra_kind (kind a)›
have "upd_rev_cs cs xs = upd_rev_cs cs as'" by(fastforce simp:intra_kind_def)
with ‹valid_path_rev_aux (upd_rev_cs cs xs) as''›
show ?thesis by simp
qed
}
next
case (vpra_Return cs a as Q p f as'')
note IH1 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_rev_aux (a#cs) ys›
note IH2 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_rev_aux (upd_rev_cs (a#cs) ys) xs›
{ case 1
from vpra_Return
have "as' = [] ∧ as@[a] = as'' ∨ (∃xs. as = as''@xs ∧ xs@[a] = as')"
by(cases as' rule:rev_cases) auto
thus ?case
proof
assume "as' = [] ∧ as@[a] = as''"
thus ?thesis by simp
next
assume "∃xs. as = as''@xs ∧ xs@[a] = as'"
then obtain xs where "as = as''@xs" and "xs@[a] = as'" by auto
from IH1[OF ‹as = as''@xs›] have "valid_path_rev_aux (a#cs) xs" .
with ‹xs@[a] = as'› ‹kind a = Q↩⇘p⇙f›
show ?thesis by fastforce
qed
next
case 2
from vpra_Return
have "as' = [] ∧ as@[a] = as'' ∨ (∃xs. as = as''@xs ∧ xs@[a] = as')"
by(cases as' rule:rev_cases) auto
thus ?case
proof
assume "as' = [] ∧ as@[a] = as''"
hence "as = butlast as''@[]" by(cases as) auto
from IH2[OF this]
have "valid_path_rev_aux (upd_rev_cs (a#cs) []) (butlast as'')" .
with ‹as' = [] ∧ as@[a] = as''› ‹kind a = Q↩⇘p⇙f›
show ?thesis by fastforce
next
assume "∃xs. as = as''@xs ∧ xs@[a] = as'"
then obtain xs where "as = as''@xs" and "xs@[a] = as'" by auto
from IH2[OF ‹as = as''@xs›]
have "valid_path_rev_aux (upd_rev_cs (a#cs) xs) as''" .
from ‹xs@[a] = as'› ‹kind a = Q↩⇘p⇙f›
have "upd_rev_cs (a#cs) xs = upd_rev_cs cs as'" by fastforce
with ‹valid_path_rev_aux (upd_rev_cs (a#cs) xs) as''›
show ?thesis by simp
qed
}
next
case (vpra_CallEmpty cs a as Q r p fs as'')
note IH1 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_rev_aux [] ys›
note IH2 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_rev_aux (upd_rev_cs [] ys) xs›
{ case 1
from vpra_CallEmpty
have "as' = [] ∧ as@[a] = as'' ∨ (∃xs. as = as''@xs ∧ xs@[a] = as')"
by(cases as' rule:rev_cases) auto
thus ?case
proof
assume "as' = [] ∧ as@[a] = as''"
thus ?thesis by simp
next
assume "∃xs. as = as''@xs ∧ xs@[a] = as'"
then obtain xs where "as = as''@xs" and "xs@[a] = as'" by auto
from IH1[OF ‹as = as''@xs›] have "valid_path_rev_aux [] xs" .
with ‹xs@[a] = as'› ‹kind a = Q:r↪⇘p⇙fs› ‹cs = []›
show ?thesis by fastforce
qed
next
case 2
from vpra_CallEmpty
have "as' = [] ∧ as@[a] = as'' ∨ (∃xs. as = as''@xs ∧ xs@[a] = as')"
by(cases as' rule:rev_cases) auto
thus ?case
proof
assume "as' = [] ∧ as@[a] = as''"
hence "as = butlast as''@[]" by(cases as) auto
from IH2[OF this]
have "valid_path_rev_aux (upd_rev_cs [] []) (butlast as'')" .
with ‹as' = [] ∧ as@[a] = as''› ‹kind a = Q:r↪⇘p⇙fs› ‹cs = []›
show ?thesis by fastforce
next
assume "∃xs. as = as''@xs ∧ xs@[a] = as'"
then obtain xs where "as = as''@xs" and "xs@[a] = as'" by auto
from IH2[OF ‹as = as''@xs›]
have "valid_path_rev_aux (upd_rev_cs [] xs) as''" .
with ‹xs@[a] = as'› ‹kind a = Q:r↪⇘p⇙fs› ‹cs = []›
show ?thesis by fastforce
qed
}
next
case (vpra_CallCons cs a as Q r p fs c' cs' as'')
note IH1 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_rev_aux cs' ys›
note IH2 = ‹⋀xs ys. as = xs@ys ⟹ valid_path_rev_aux (upd_rev_cs cs' ys) xs›
{ case 1
from vpra_CallCons
have "as' = [] ∧ as@[a] = as'' ∨ (∃xs. as = as''@xs ∧ xs@[a] = as')"
by(cases as' rule:rev_cases) auto
thus ?case
proof
assume "as' = [] ∧ as@[a] = as''"
thus ?thesis by simp
next
assume "∃xs. as = as''@xs ∧ xs@[a] = as'"
then obtain xs where "as = as''@xs" and "xs@[a] = as'" by auto
from IH1[OF ‹as = as''@xs›] have "valid_path_rev_aux cs' xs" .
with ‹xs@[a] = as'› ‹kind a = Q:r↪⇘p⇙fs› ‹cs = c' # cs'› ‹c' ∈ get_return_edges a›
show ?thesis by fastforce
qed
next
case 2
from vpra_CallCons
have "as' = [] ∧ as@[a] = as'' ∨ (∃xs. as = as''@xs ∧ xs@[a] = as')"
by(cases as' rule:rev_cases) auto
thus ?case
proof
assume "as' = [] ∧ as@[a] = as''"
hence "as = butlast as''@[]" by(cases as) auto
from IH2[OF this]
have "valid_path_rev_aux (upd_rev_cs cs' []) (butlast as'')" .
with ‹as' = [] ∧ as@[a] = as''› ‹kind a = Q:r↪⇘p⇙fs› ‹cs = c' # cs'›
‹c' ∈ get_return_edges a› show ?thesis by fastforce
next
assume "∃xs. as = as''@xs ∧ xs@[a] = as'"
then obtain xs where "as = as''@xs" and "xs@[a] = as'" by auto
from IH2[OF ‹as = as''@xs›]
have "valid_path_rev_aux (upd_rev_cs cs' xs) as''" .
with ‹xs@[a] = as'› ‹kind a = Q:r↪⇘p⇙fs› ‹cs = c' # cs'›
‹c' ∈ get_return_edges a›
show ?thesis by fastforce
qed
}
qed simp_all
lemma valid_path_rev_aux_Append:
"⟦valid_path_rev_aux cs as'; valid_path_rev_aux (upd_rev_cs cs as') as⟧
⟹ valid_path_rev_aux cs (as@as')"
by(induct rule:vpra_induct,
auto simp:intra_kind_def simp del:append_assoc simp:append_assoc[THEN sym])
lemma vpra_Cons_intra:
assumes "intra_kind(kind a)"
shows "valid_path_rev_aux cs as ⟹ valid_path_rev_aux cs (a#as)"
proof(induct rule:vpra_induct)
case (vpra_empty cs)
have "valid_path_rev_aux cs []" by simp
with ‹intra_kind(kind a)› have "valid_path_rev_aux cs ([]@[a])"
by(simp only:valid_path_rev_aux.simps intra_kind_def,fastforce)
thus ?case by simp
qed(simp only:append_Cons[THEN sym] valid_path_rev_aux.simps intra_kind_def,fastforce)+
lemma vpra_Cons_Return:
assumes "kind a = Q↩⇘p⇙f"
shows "valid_path_rev_aux cs as ⟹ valid_path_rev_aux cs (a#as)"
proof(induct rule:vpra_induct)
case (vpra_empty cs)
from ‹kind a = Q↩⇘p⇙f› have "valid_path_rev_aux cs ([]@[a])"
by(simp only:valid_path_rev_aux.simps,clarsimp)
thus ?case by simp
next
case (vpra_intra cs a' as')
from ‹valid_path_rev_aux cs (a#as')› ‹intra_kind (kind a')›
have "valid_path_rev_aux cs ((a#as')@[a'])"
by(simp only:valid_path_rev_aux.simps,fastforce simp:intra_kind_def)
thus ?case by simp
next
case (vpra_Return cs a' as' Q' p' f')
from ‹valid_path_rev_aux (a'#cs) (a#as')› ‹kind a' = Q'↩⇘p'⇙f'›
have "valid_path_rev_aux cs ((a#as')@[a'])"
by(simp only:valid_path_rev_aux.simps,clarsimp)
thus ?case by simp
next
case (vpra_CallEmpty cs a' as' Q' r' p' fs')
from ‹valid_path_rev_aux [] (a#as')› ‹kind a' = Q':r'↪⇘p'⇙fs'› ‹cs = []›
have "valid_path_rev_aux cs ((a#as')@[a'])"
by(simp only:valid_path_rev_aux.simps,clarsimp)
thus ?case by simp
next
case (vpra_CallCons cs a' as' Q' r' p' fs' c' cs')
from ‹valid_path_rev_aux cs' (a#as')› ‹kind a' = Q':r'↪⇘p'⇙fs'› ‹cs = c'#cs'›
‹c' ∈ get_return_edges a'›
have "valid_path_rev_aux cs ((a#as')@[a'])"
by(simp only:valid_path_rev_aux.simps,clarsimp)
thus ?case by simp
qed
lemmas append_Cons_rev = append_Cons[THEN sym]
declare append_Cons [simp del] append_Cons_rev [simp]
lemma upd_rev_cs_Cons_intra:
assumes "intra_kind(kind a)" shows "upd_rev_cs cs (a#as) = upd_rev_cs cs as"
proof(induct as arbitrary:cs rule:rev_induct)
case Nil
from ‹intra_kind (kind a)›
have "upd_rev_cs cs ([]@[a]) = upd_rev_cs cs []"
by(simp only:upd_rev_cs.simps,auto simp:intra_kind_def)
thus ?case by simp
next
case (snoc a' as')
note IH = ‹⋀cs. upd_rev_cs cs (a#as') = upd_rev_cs cs as'›
show ?case
proof(cases "kind a'" rule:edge_kind_cases)
case Intra
from IH have "upd_rev_cs cs (a#as') = upd_rev_cs cs as'" .
with Intra have "upd_rev_cs cs ((a#as')@[a']) = upd_rev_cs cs (as'@[a'])"
by(fastforce simp:intra_kind_def)
thus ?thesis by simp
next
case Return
from IH have "upd_rev_cs (a'#cs) (a#as') = upd_rev_cs (a'#cs) as'" .
with Return have "upd_rev_cs cs ((a#as')@[a']) = upd_rev_cs cs (as'@[a'])"
by(auto simp:intra_kind_def)
thus ?thesis by simp
next
case Call
show ?thesis
proof(cases cs)
case Nil
from IH have "upd_rev_cs [] (a#as') = upd_rev_cs [] as'" .
with Call Nil have "upd_rev_cs cs ((a#as')@[a']) = upd_rev_cs cs (as'@[a'])"
by(auto simp:intra_kind_def)
thus ?thesis by simp
next
case (Cons c' cs')
from IH have "upd_rev_cs cs' (a#as') = upd_rev_cs cs' as'" .
with Call Cons have "upd_rev_cs cs ((a#as')@[a']) = upd_rev_cs cs (as'@[a'])"
by(auto simp:intra_kind_def)
thus ?thesis by simp
qed
qed
qed
lemma upd_rev_cs_Cons_Return:
assumes "kind a = Q↩⇘p⇙f" shows "upd_rev_cs cs (a#as) = a#(upd_rev_cs cs as)"
proof(induct as arbitrary:cs rule:rev_induct)
case Nil
with ‹kind a = Q↩⇘p⇙f› have "upd_rev_cs cs ([]@[a]) = a#(upd_rev_cs cs [])"
by(simp only:upd_rev_cs.simps) clarsimp
thus ?case by simp
next
case (snoc a' as')
note IH = ‹⋀cs. upd_rev_cs cs (a#as') = a#upd_rev_cs cs as'›
show ?case
proof(cases "kind a'" rule:edge_kind_cases)
case Intra
from IH have "upd_rev_cs cs (a#as') = a#(upd_rev_cs cs as')" .
with Intra have "upd_rev_cs cs ((a#as')@[a']) = a#(upd_rev_cs cs (as'@[a']))"
by(fastforce simp:intra_kind_def)
thus ?thesis by simp
next
case Return
from IH have "upd_rev_cs (a'#cs) (a#as') = a#(upd_rev_cs (a'#cs) as')" .
with Return have "upd_rev_cs cs ((a#as')@[a']) = a#(upd_rev_cs cs (as'@[a']))"
by(auto simp:intra_kind_def)
thus ?thesis by simp
next
case Call
show ?thesis
proof(cases cs)
case Nil
from IH have "upd_rev_cs [] (a#as') = a#(upd_rev_cs [] as')" .
with Call Nil have "upd_rev_cs cs ((a#as')@[a']) = a#(upd_rev_cs cs (as'@[a']))"
by(auto simp:intra_kind_def)
thus ?thesis by simp
next
case (Cons c' cs')
from IH have "upd_rev_cs cs' (a#as') = a#(upd_rev_cs cs' as')" .
with Call Cons
have "upd_rev_cs cs ((a#as')@[a']) = a#(upd_rev_cs cs (as'@[a']))"
by(auto simp:intra_kind_def)
thus ?thesis by simp
qed
qed
qed
lemma upd_rev_cs_Cons_Call_Cons:
assumes "kind a = Q:r↪⇘p⇙fs"
shows "upd_rev_cs cs as = c'#cs' ⟹ upd_rev_cs cs (a#as) = cs'"
proof(induct as arbitrary:cs rule:rev_induct)
case Nil
with ‹kind a = Q:r↪⇘p⇙fs› have "upd_rev_cs cs ([]@[a]) = cs'"
by(simp only:upd_rev_cs.simps) clarsimp
thus ?case by simp
next
case (snoc a' as')
note IH = ‹⋀cs. upd_rev_cs cs as' = c'#cs' ⟹ upd_rev_cs cs (a#as') = cs'›
show ?case
proof(cases "kind a'" rule:edge_kind_cases)
case Intra
with ‹upd_rev_cs cs (as'@[a']) = c'#cs'›
have "upd_rev_cs cs as' = c'#cs'" by(fastforce simp:intra_kind_def)
from IH[OF this] have "upd_rev_cs cs (a#as') = cs'" .
with Intra show ?thesis by(fastforce simp:intra_kind_def)
next
case Return
with ‹upd_rev_cs cs (as'@[a']) = c'#cs'›
have "upd_rev_cs (a'#cs) as' = c'#cs'" by simp
from IH[OF this] have "upd_rev_cs (a'#cs) (a#as') = cs'" .
with Return show ?thesis by simp
next
case Call
show ?thesis
proof(cases cs)
case Nil
with ‹upd_rev_cs cs (as'@[a']) = c'#cs'› Call
have "upd_rev_cs cs as' = c'#cs'" by simp
from IH[OF this] have "upd_rev_cs cs (a#as') = cs'" .
with Nil Call show ?thesis by simp
next
case (Cons cx csx)
with ‹upd_rev_cs cs (as'@[a']) = c'#cs'› Call
have "upd_rev_cs csx as' = c'#cs'" by simp
from IH[OF this] have "upd_rev_cs csx (a#as') = cs'" .
with Cons Call show ?thesis by simp
qed
qed
qed
lemma upd_rev_cs_Cons_Call_Cons_Empty:
assumes "kind a = Q:r↪⇘p⇙fs"
shows "upd_rev_cs cs as = [] ⟹ upd_rev_cs cs (a#as) = []"
proof(induct as arbitrary:cs rule:rev_induct)
case Nil
with ‹kind a = Q:r↪⇘p⇙fs› have "upd_rev_cs cs ([]@[a]) = []"
by(simp only:upd_rev_cs.simps) clarsimp
thus ?case by simp
next
case (snoc a' as')
note IH = ‹⋀cs. upd_rev_cs cs as' = [] ⟹ upd_rev_cs cs (a#as') = []›
show ?case
proof(cases "kind a'" rule:edge_kind_cases)
case Intra
with ‹upd_rev_cs cs (as'@[a']) = []›
have "upd_rev_cs cs as' = []" by(fastforce simp:intra_kind_def)
from IH[OF this] have "upd_rev_cs cs (a#as') = []" .
with Intra show ?thesis by(fastforce simp:intra_kind_def)
next
case Return
with ‹upd_rev_cs cs (as'@[a']) = []›
have "upd_rev_cs (a'#cs) as' = []" by simp
from IH[OF this] have "upd_rev_cs (a'#cs) (a#as') = []" .
with Return show ?thesis by simp
next
case Call
show ?thesis
proof(cases cs)
case Nil
with ‹upd_rev_cs cs (as'@[a']) = []› Call
have "upd_rev_cs cs as' = []" by simp
from IH[OF this] have "upd_rev_cs cs (a#as') = []" .
with Nil Call show ?thesis by simp
next
case (Cons cx csx)
with ‹upd_rev_cs cs (as'@[a']) = []› Call
have "upd_rev_cs csx as' = []" by simp
from IH[OF this] have "upd_rev_cs csx (a#as') = []" .
with Cons Call show ?thesis by simp
qed
qed
qed
declare append_Cons [simp] append_Cons_rev [simp del]
definition valid_call_list :: "'edge list ⇒ 'node ⇒ bool"
where "valid_call_list cs n ≡
∀cs' c cs''. cs = cs'@c#cs'' ⟶ (valid_edge c ∧ (∃Q r p fs. (kind c = Q:r↪⇘p⇙fs) ∧
p = get_proc (case cs' of [] ⇒ n | _ ⇒ last (sourcenodes cs'))))"
definition valid_return_list :: "'edge list ⇒ 'node ⇒ bool"
where "valid_return_list cs n ≡
∀cs' c cs''. cs = cs'@c#cs'' ⟶ (valid_edge c ∧ (∃Q p f. (kind c = Q↩⇘p⇙f) ∧
p = get_proc (case cs' of [] ⇒ n | _ ⇒ last (targetnodes cs'))))"
lemma valid_call_list_valid_edges:
assumes "valid_call_list cs n" shows "∀c ∈ set cs. valid_edge c"
proof -
from ‹valid_call_list cs n›
have "∀cs' c cs''. cs = cs'@c#cs'' ⟶ valid_edge c"
by(simp add:valid_call_list_def)
thus ?thesis
proof(induct cs)
case Nil thus ?case by simp
next
case (Cons cx csx)
note IH = ‹∀cs' c cs''. csx = cs'@c#cs'' ⟶ valid_edge c ⟹
∀a∈set csx. valid_edge a›
from ‹∀cs' c cs''. cx#csx = cs'@c#cs'' ⟶ valid_edge c›
have "valid_edge cx" by blast
from ‹∀cs' c cs''. cx#csx = cs'@c#cs'' ⟶ valid_edge c›
have "∀cs' c cs''. csx = cs'@c#cs'' ⟶ valid_edge c"
by auto(erule_tac x="cx#cs'" in allE,auto)
from IH[OF this] ‹valid_edge cx› show ?case by simp
qed
qed
lemma valid_return_list_valid_edges:
assumes "valid_return_list rs n" shows "∀r ∈ set rs. valid_edge r"
proof -
from ‹valid_return_list rs n›
have "∀rs' r rs''. rs = rs'@r#rs'' ⟶ valid_edge r"
by(simp add:valid_return_list_def)
thus ?thesis
proof(induct rs)
case Nil thus ?case by simp
next
case (Cons rx rsx)
note IH = ‹∀rs' r rs''. rsx = rs'@r#rs'' ⟶ valid_edge r ⟹
∀a∈set rsx. valid_edge a›
from ‹∀rs' r rs''. rx#rsx = rs'@r#rs'' ⟶ valid_edge r›
have "valid_edge rx" by blast
from ‹∀rs' r rs''. rx#rsx = rs'@r#rs'' ⟶ valid_edge r›
have "∀rs' r rs''. rsx = rs'@r#rs'' ⟶ valid_edge r"
by auto(erule_tac x="rx#rs'" in allE,auto)
from IH[OF this] ‹valid_edge rx› show ?case by simp
qed
qed
lemma vpra_empty_valid_call_list_rev:
"valid_call_list cs n ⟹ valid_path_rev_aux [] (rev cs)"
proof(induct cs arbitrary:n)
case Nil thus ?case by simp
next
case (Cons c' cs')
note IH = ‹⋀n. valid_call_list cs' n ⟹ valid_path_rev_aux [] (rev cs')›
from ‹valid_call_list (c'#cs') n› have "valid_call_list cs' (sourcenode c')"
apply(clarsimp simp:valid_call_list_def)
apply hypsubst_thin
apply(erule_tac x="c'#cs'" in allE)
apply clarsimp
by(case_tac cs',auto simp:sourcenodes_def)
from IH[OF this] have "valid_path_rev_aux [] (rev cs')" .
moreover
from ‹valid_call_list (c'#cs') n› obtain Q r p fs where "kind c' = Q:r↪⇘p⇙fs"
apply(clarsimp simp:valid_call_list_def)
by(erule_tac x="[]" in allE) fastforce
ultimately show ?case by simp
qed
lemma vpa_upd_cs_cases:
"⟦valid_path_aux cs as; valid_call_list cs n; n -as→* n'⟧
⟹ case (upd_cs cs as) of [] ⇒ (∀c ∈ set cs. ∃a ∈ set as. a ∈ get_return_edges c)
| cx#csx ⇒ valid_call_list (cx#csx) n'"
proof(induct arbitrary:n rule:vpa_induct)
case (vpa_empty cs)
from ‹n -[]→* n'› have "n = n'" by fastforce
with ‹valid_call_list cs n› show ?case by(cases cs) auto
next
case (vpa_intra cs a' as')
note IH = ‹⋀n. ⟦valid_call_list cs n; n -as'→* n'⟧
⟹ case (upd_cs cs as') of [] ⇒ ∀c∈set cs. ∃a∈set as'. a ∈ get_return_edges c
| cx#csx ⇒ valid_call_list (cx # csx) n'›
from ‹intra_kind (kind a')› have "upd_cs cs (a'#as') = upd_cs cs as'"
by(fastforce simp:intra_kind_def)
from ‹n -a'#as'→* n'› have [simp]:"n = sourcenode a'" and "valid_edge a'"
and "targetnode a' -as'→* n'" by(auto elim:path_split_Cons)
from ‹valid_edge a'› ‹intra_kind (kind a')›
have "get_proc (sourcenode a') = get_proc (targetnode a')" by(rule get_proc_intra)
with ‹valid_call_list cs n› have "valid_call_list cs (targetnode a')"
apply(clarsimp simp:valid_call_list_def)
apply(erule_tac x="cs'" in allE) apply clarsimp
by(case_tac cs') auto
from IH[OF this ‹targetnode a' -as'→* n'›] ‹upd_cs cs (a'#as') = upd_cs cs as'›
show ?case by(cases "upd_cs cs as'") auto
next
case (vpa_Call cs a' as' Q r p fs)
note IH = ‹⋀n. ⟦valid_call_list (a'#cs) n; n -as'→* n'⟧
⟹ case (upd_cs (a'#cs) as')
of [] ⇒ ∀c∈set (a'#cs). ∃a∈set as'. a ∈ get_return_edges c
| cx#csx ⇒ valid_call_list (cx # csx) n'›
from ‹kind a' = Q:r↪⇘p⇙fs› have "upd_cs (a'#cs) as' = upd_cs cs (a'#as')"
by simp
from ‹n -a'#as'→* n'› have [simp]:"n = sourcenode a'" and "valid_edge a'"
and "targetnode a' -as'→* n'" by(auto elim:path_split_Cons)
from ‹valid_edge a'› ‹kind a' = Q:r↪⇘p⇙fs›
have "get_proc (targetnode a') = p" by(rule get_proc_call)
with ‹valid_edge a'› ‹kind a' = Q:r↪⇘p⇙fs› ‹valid_call_list cs n›
have "valid_call_list (a'#cs) (targetnode a')"
apply(clarsimp simp:valid_call_list_def)
apply(case_tac cs') apply auto
apply(erule_tac x="list" in allE) apply clarsimp
by(case_tac list,auto simp:sourcenodes_def)
from IH[OF this ‹targetnode a' -as'→* n'›]
‹upd_cs (a'#cs) as' = upd_cs cs (a'#as')›
have "case upd_cs cs (a'#as')
of [] ⇒ ∀c∈set (a' # cs). ∃a∈set as'. a ∈ get_return_edges c
| cx # csx ⇒ valid_call_list (cx # csx) n'" by simp
thus ?case by(cases "upd_cs cs (a'#as')") simp+
next
case (vpa_ReturnEmpty cs a' as' Q p f)
note IH = ‹⋀n. ⟦valid_call_list [] n; n -as'→* n'⟧
⟹ case (upd_cs [] as')
of [] ⇒ ∀c∈set []. ∃a∈set as'. a ∈ get_return_edges c
| cx#csx ⇒ valid_call_list (cx # csx) n'›
from ‹kind a' = Q↩⇘p⇙f› ‹cs = []› have "upd_cs [] as' = upd_cs cs (a'#as')"
by simp
from ‹n -a'#as'→* n'› have [simp]:"n = sourcenode a'" and "valid_edge a'"
and "targetnode a' -as'→* n'" by(auto elim:path_split_Cons)
have "valid_call_list [] (targetnode a')" by(simp add:valid_call_list_def)
from IH[OF this ‹targetnode a' -as'→* n'›]
‹upd_cs [] as' = upd_cs cs (a'#as')›
have "case (upd_cs cs (a'#as'))
of [] ⇒ ∀c∈set []. ∃a∈set as'. a ∈ get_return_edges c
| cx#csx ⇒ valid_call_list (cx#csx) n'" by simp
with ‹cs = []› show ?case by(cases "upd_cs cs (a'#as')") simp+
next
case (vpa_ReturnCons cs a' as' Q p f c' cs')
note IH = ‹⋀n. ⟦valid_call_list cs' n; n -as'→* n'⟧
⟹ case (upd_cs cs' as')
of [] ⇒ ∀c∈set cs'. ∃a∈set as'. a ∈ get_return_edges c
| cx#csx ⇒ valid_call_list (cx # csx) n'›
from ‹kind a' = Q↩⇘p⇙f› ‹cs = c'#cs'› ‹a' ∈ get_return_edges c'›
have "upd_cs cs' as' = upd_cs cs (a'#as')" by simp
from ‹n -a'#as'→* n'› have [simp]:"n = sourcenode a'" and "valid_edge a'"
and "targetnode a' -as'→* n'" by(auto elim:path_split_Cons)
from ‹valid_call_list cs n› ‹cs = c'#cs'› have "valid_edge c'"
apply(clarsimp simp:valid_call_list_def)
by(erule_tac x="[]" in allE,auto)
with ‹a' ∈ get_return_edges c'› obtain ax where "valid_edge ax"
and sources:"sourcenode ax = sourcenode c'"
and targets:"targetnode ax = targetnode a'" and "kind ax = (λcf. False)⇩√"
by(fastforce dest:call_return_node_edge)
from ‹valid_edge ax› sources[THEN sym] targets[THEN sym] ‹kind ax = (λcf. False)⇩√›
have "get_proc (sourcenode c') = get_proc (targetnode a')"
by(fastforce intro:get_proc_intra simp:intra_kind_def)
with ‹valid_call_list cs n› ‹cs = c'#cs'›
have "valid_call_list cs' (targetnode a')"
apply(clarsimp simp:valid_call_list_def)
apply(hypsubst_thin)
apply(erule_tac x="c'#cs'" in allE)
by(case_tac cs',auto simp:sourcenodes_def)
from IH[OF this ‹targetnode a' -as'→* n'›]
‹upd_cs cs' as' = upd_cs cs (a'#as')›
have "case (upd_cs cs (a'#as'))
of [] ⇒ ∀c∈set cs'. ∃a∈set as'. a ∈ get_return_edges c
| cx#csx ⇒ valid_call_list (cx#csx) n'" by simp
with ‹cs = c' # cs'› ‹a' ∈ get_return_edges c'› show ?case
by(cases "upd_cs cs (a'#as')") simp+
qed
lemma vpa_valid_call_list_valid_return_list_vpra:
"⟦valid_path_aux cs cs'; valid_call_list cs n; valid_return_list cs' n'⟧
⟹ valid_path_rev_aux cs' (rev cs)"
proof(induct arbitrary:n n' rule:vpa_induct)
case (vpa_empty cs)
from ‹valid_call_list cs n› show ?case by(rule vpra_empty_valid_call_list_rev)
next
case (vpa_intra cs a as)
from ‹intra_kind (kind a)› ‹valid_return_list (a#as) n'›
have False apply(clarsimp simp:valid_return_list_def)
by(erule_tac x="[]" in allE,clarsimp simp:intra_kind_def)
thus ?case by simp
next
case (vpa_Call cs a as Q r p fs)
from ‹kind a = Q:r↪⇘p⇙fs› ‹valid_return_list (a#as) n'›
have False apply(clarsimp simp:valid_return_list_def)
by(erule_tac x="[]" in allE,clarsimp)
thus ?case by simp
next
case (vpa_ReturnEmpty cs a as Q p f)
from ‹cs = []› show ?case by simp
next
case (vpa_ReturnCons cs a as Q p f c' cs')
note IH = ‹⋀n n'. ⟦valid_call_list cs' n; valid_return_list as n'⟧
⟹ valid_path_rev_aux as (rev cs')›
from ‹valid_return_list (a#as) n'› have "valid_return_list as (targetnode a)"
apply(clarsimp simp:valid_return_list_def)
apply(erule_tac x="a#cs'" in allE)
by(case_tac cs',auto simp:targetnodes_def)
from ‹valid_call_list cs n› ‹cs = c'#cs'›
have "valid_call_list cs' (sourcenode c')"
apply(clarsimp simp:valid_call_list_def)
apply(erule_tac x="c'#cs'" in allE)
by(case_tac cs',auto simp:sourcenodes_def)
from ‹valid_call_list cs n› ‹cs = c'#cs'› have "valid_edge c'"
apply(clarsimp simp:valid_call_list_def)
by(erule_tac x="[]" in allE,auto)
with ‹a ∈ get_return_edges c'› obtain Q' r' p' f' where "kind c' = Q':r'↪⇘p'⇙f'"
apply(cases "kind c'" rule:edge_kind_cases)
by(auto dest:only_call_get_return_edges simp:intra_kind_def)
from IH[OF ‹valid_call_list cs' (sourcenode c')›
‹valid_return_list as (targetnode a)›]
have "valid_path_rev_aux as (rev cs')" .
with ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'› ‹a ∈ get_return_edges c'› ‹kind c' = Q':r'↪⇘p'⇙f'›
show ?case by simp
qed
lemma vpa_to_vpra:
"⟦valid_path_aux cs as; valid_path_aux (upd_cs cs as) cs';
n -as→* n'; valid_call_list cs n; valid_return_list cs' n''⟧
⟹ valid_path_rev_aux cs' as ∧ valid_path_rev_aux (upd_rev_cs cs' as) (rev cs)"
proof(induct arbitrary:n rule:vpa_induct)
case vpa_empty thus ?case
by(fastforce intro:vpa_valid_call_list_valid_return_list_vpra)
next
case (vpa_intra cs a as)
note IH = ‹⋀n. ⟦valid_path_aux (upd_cs cs as) cs'; n -as→* n';
valid_call_list cs n; valid_return_list cs' n''⟧
⟹ valid_path_rev_aux cs' as ∧
valid_path_rev_aux (upd_rev_cs cs' as) (rev cs)›
from ‹n -a#as→* n'› have "n = sourcenode a" and "valid_edge a"
and "targetnode a -as→* n'" by(auto intro:path_split_Cons)
from ‹valid_edge a› ‹intra_kind (kind a)›
have "get_proc (sourcenode a) = get_proc (targetnode a)" by(rule get_proc_intra)
with ‹valid_call_list cs n› ‹n = sourcenode a›
have "valid_call_list cs (targetnode a)"
apply(clarsimp simp:valid_call_list_def)
apply(erule_tac x="cs'" in allE) apply clarsimp
by(case_tac cs') auto
from ‹valid_path_aux (upd_cs cs (a#as)) cs'› ‹intra_kind (kind a)›
have "valid_path_aux (upd_cs cs as) cs'"
by(fastforce simp:intra_kind_def)
from IH[OF this ‹targetnode a -as→* n'› ‹valid_call_list cs (targetnode a)›
‹valid_return_list cs' n''›]
have "valid_path_rev_aux cs' as"
and "valid_path_rev_aux (upd_rev_cs cs' as) (rev cs)" by simp_all
from ‹intra_kind (kind a)› ‹valid_path_rev_aux cs' as›
have "valid_path_rev_aux cs' (a#as)" by(rule vpra_Cons_intra)
from ‹intra_kind (kind a)› have "upd_rev_cs cs' (a#as) = upd_rev_cs cs' as"
by(simp add:upd_rev_cs_Cons_intra)
with ‹valid_path_rev_aux (upd_rev_cs cs' as) (rev cs)›
have "valid_path_rev_aux (upd_rev_cs cs' (a#as)) (rev cs)" by simp
with ‹valid_path_rev_aux cs' (a#as)› show ?case by simp
next
case (vpa_Call cs a as Q r p fs)
note IH = ‹⋀n. ⟦valid_path_aux (upd_cs (a#cs) as) cs'; n -as→* n';
valid_call_list (a#cs) n; valid_return_list cs' n''⟧
⟹ valid_path_rev_aux cs' as ∧
valid_path_rev_aux (upd_rev_cs cs' as) (rev (a#cs))›
from ‹n -a#as→* n'› have "n = sourcenode a" and "valid_edge a"
and "targetnode a -as→* n'" by(auto intro:path_split_Cons)
from ‹valid_edge a› ‹kind a = Q:r↪⇘p⇙fs› have "p = get_proc (targetnode a)"
by(rule get_proc_call[THEN sym])
from ‹valid_call_list cs n› ‹n = sourcenode a›
have "valid_call_list cs (sourcenode a)" by simp
with ‹kind a = Q:r↪⇘p⇙fs› ‹valid_edge a› ‹p = get_proc (targetnode a)›
have "valid_call_list (a#cs) (targetnode a)"
apply(clarsimp simp:valid_call_list_def)
apply(case_tac cs') apply auto
apply(erule_tac x="list" in allE) apply clarsimp
by(case_tac list,auto simp:sourcenodes_def)
from ‹kind a = Q:r↪⇘p⇙fs› have "upd_cs cs (a#as) = upd_cs (a#cs) as"
by simp
with ‹valid_path_aux (upd_cs cs (a#as)) cs'›
have "valid_path_aux (upd_cs (a#cs) as) cs'" by simp
from IH[OF this ‹targetnode a -as→* n'› ‹valid_call_list (a#cs) (targetnode a)›
‹valid_return_list cs' n''›]
have "valid_path_rev_aux cs' as"
and "valid_path_rev_aux (upd_rev_cs cs' as) (rev (a#cs))" by simp_all
show ?case
proof(cases "upd_rev_cs cs' as")
case Nil
with ‹kind a = Q:r↪⇘p⇙fs›
have "upd_rev_cs cs' (a#as) = []" by(rule upd_rev_cs_Cons_Call_Cons_Empty)
with ‹valid_path_rev_aux (upd_rev_cs cs' as) (rev (a#cs))› ‹kind a = Q:r↪⇘p⇙fs› Nil
have "valid_path_rev_aux (upd_rev_cs cs' (a#as)) (rev cs)" by simp
from Nil ‹kind a = Q:r↪⇘p⇙fs› have "valid_path_rev_aux (upd_rev_cs cs' as) ([]@[a])"
by(simp only:valid_path_rev_aux.simps) clarsimp
with ‹valid_path_rev_aux cs' as› have "valid_path_rev_aux cs' ([a]@as)"
by(fastforce intro:valid_path_rev_aux_Append)
with ‹valid_path_rev_aux (upd_rev_cs cs' (a#as)) (rev cs)›
show ?thesis by simp
next
case (Cons cx csx)
with ‹valid_path_rev_aux (upd_rev_cs cs' as) (rev (a#cs))› ‹kind a = Q:r↪⇘p⇙fs›
have match:"cx ∈ get_return_edges a" "valid_path_rev_aux csx (rev cs)" by auto
from ‹kind a = Q:r↪⇘p⇙fs› Cons have "upd_rev_cs cs' (a#as) = csx"
by(rule upd_rev_cs_Cons_Call_Cons)
with ‹valid_path_rev_aux (upd_rev_cs cs' as) (rev(a#cs))› ‹kind a = Q:r↪⇘p⇙fs› match
have "valid_path_rev_aux (upd_rev_cs cs' (a#as)) (rev cs)" by simp
from Cons ‹kind a = Q:r↪⇘p⇙fs› match
have "valid_path_rev_aux (upd_rev_cs cs' as) ([]@[a])"
by(simp only:valid_path_rev_aux.simps) clarsimp
with ‹valid_path_rev_aux cs' as› have "valid_path_rev_aux cs' ([a]@as)"
by(fastforce intro:valid_path_rev_aux_Append)
with ‹valid_path_rev_aux (upd_rev_cs cs' (a#as)) (rev cs)›
show ?thesis by simp
qed
next
case (vpa_ReturnEmpty cs a as Q p f)
note IH = ‹⋀n. ⟦valid_path_aux (upd_cs [] as) cs'; n -as→* n';
valid_call_list [] n; valid_return_list cs' n''⟧
⟹ valid_path_rev_aux cs' as ∧
valid_path_rev_aux (upd_rev_cs cs' as) (rev [])›
from ‹n -a#as→* n'› have "n = sourcenode a" and "valid_edge a"
and "targetnode a -as→* n'" by(auto intro:path_split_Cons)
from ‹cs = []› ‹kind a = Q↩⇘p⇙f› have "upd_cs cs (a#as) = upd_cs [] as"
by simp
with ‹valid_path_aux (upd_cs cs (a#as)) cs'›
have "valid_path_aux (upd_cs [] as) cs'" by simp
from IH[OF this ‹targetnode a -as→* n'› _ ‹valid_return_list cs' n''›]
have "valid_path_rev_aux cs' as"
and "valid_path_rev_aux (upd_rev_cs cs' as) (rev [])"
by(auto simp:valid_call_list_def)
from ‹kind a = Q↩⇘p⇙f› ‹valid_path_rev_aux cs' as›
have "valid_path_rev_aux cs' (a#as)" by(rule vpra_Cons_Return)
moreover
from ‹cs = []› have "valid_path_rev_aux (upd_rev_cs cs' (a#as)) (rev cs)"
by simp
ultimately show ?case by simp
next
case (vpa_ReturnCons cs a as Q p f cx csx)
note IH = ‹⋀n. ⟦valid_path_aux (upd_cs csx as) cs'; n -as→* n';
valid_call_list csx n; valid_return_list cs' n''⟧
⟹ valid_path_rev_aux cs' as ∧
valid_path_rev_aux (upd_rev_cs cs' as) (rev csx)›
note match = ‹cs = cx#csx› ‹a ∈ get_return_edges cx›
from ‹n -a#as→* n'› have "n = sourcenode a" and "valid_edge a"
and "targetnode a -as→* n'" by(auto intro:path_split_Cons)
from ‹cs = cx#csx› ‹valid_call_list cs n› have "valid_edge cx"
apply(clarsimp simp:valid_call_list_def)
by(erule_tac x="[]" in allE) clarsimp
with match have "get_proc (sourcenode cx) = get_proc (targetnode a)"
by(fastforce intro:get_proc_get_return_edge)
with ‹valid_call_list cs n› ‹cs = cx#csx›
have "valid_call_list csx (targetnode a)"
apply(clarsimp simp:valid_call_list_def)
apply(erule_tac x="cx#cs'" in allE) apply clarsimp
by(case_tac cs',auto simp:sourcenodes_def)
from ‹kind a = Q↩⇘p⇙f› match have "upd_cs cs (a#as) = upd_cs csx as" by simp
with ‹valid_path_aux (upd_cs cs (a#as)) cs'›
have "valid_path_aux (upd_cs csx as) cs'" by simp
from IH[OF this ‹targetnode a -as→* n'› ‹valid_call_list csx (targetnode a)›
‹valid_return_list cs' n''›]
have "valid_path_rev_aux cs' as"
and "valid_path_rev_aux (upd_rev_cs cs' as) (rev csx)" by simp_all
from ‹kind a = Q↩⇘p⇙f› ‹valid_path_rev_aux cs' as›
have "valid_path_rev_aux cs' (a#as)" by(rule vpra_Cons_Return)
from match ‹valid_edge cx› obtain Q' r' p' f' where "kind cx = Q':r'↪⇘p'⇙f'"
by(fastforce dest!:only_call_get_return_edges)
from ‹kind a = Q↩⇘p⇙f› have "upd_rev_cs cs' (a#as) = a#(upd_rev_cs cs' as)"
by(rule upd_rev_cs_Cons_Return)
with ‹valid_path_rev_aux (upd_rev_cs cs' as) (rev csx)› ‹kind a = Q↩⇘p⇙f›
‹kind cx = Q':r'↪⇘p'⇙f'› match
have "valid_path_rev_aux (upd_rev_cs cs' (a#as)) (rev cs)"
by simp
with ‹valid_path_rev_aux cs' (a#as)› show ?case by simp
qed
lemma vp_to_vpra:
"n -as→⇩√* n' ⟹ valid_path_rev_aux [] as"
by(fastforce elim:vpa_to_vpra[THEN conjunct1]
simp:vp_def valid_path_def valid_call_list_def valid_return_list_def)
subsubsection ‹Same level paths›
fun same_level_path_aux :: "'edge list ⇒ 'edge list ⇒ bool"
where "same_level_path_aux cs [] ⟷ True"
| "same_level_path_aux cs (a#as) ⟷
(case (kind a) of Q:r↪⇘p⇙fs ⇒ same_level_path_aux (a#cs) as
| Q↩⇘p⇙f ⇒ case cs of [] ⇒ False
| c'#cs' ⇒ a ∈ get_return_edges c' ∧
same_level_path_aux cs' as
| _ ⇒ same_level_path_aux cs as)"
lemma slpa_induct [consumes 1,case_names slpa_empty slpa_intra slpa_Call
slpa_Return]:
assumes major: "same_level_path_aux xs ys"
and rules: "⋀cs. P cs []"
"⋀cs a as. ⟦intra_kind(kind a); same_level_path_aux cs as; P cs as⟧
⟹ P cs (a#as)"
"⋀cs a as Q r p fs. ⟦kind a = Q:r↪⇘p⇙fs; same_level_path_aux (a#cs) as; P (a#cs) as⟧
⟹ P cs (a#as)"
"⋀cs a as Q p f c' cs'. ⟦kind a = Q↩⇘p⇙f; cs = c'#cs'; same_level_path_aux cs' as;
a ∈ get_return_edges c'; P cs' as⟧
⟹ P cs (a#as)"
shows "P xs ys"
using major
apply(induct ys arbitrary: xs)
by(auto intro:rules split:edge_kind.split_asm list.split_asm simp:intra_kind_def)
lemma slpa_cases [consumes 4,case_names intra_path return_intra_path]:
assumes "same_level_path_aux cs as" and "upd_cs cs as = []"
and "∀c ∈ set cs. valid_edge c" and "∀a ∈ set as. valid_edge a"
obtains "∀a ∈ set as. intra_kind(kind a)"
| asx a asx' Q p f c' cs' where "as = asx@a#asx'" and "same_level_path_aux cs asx"
and "kind a = Q↩⇘p⇙f" and "upd_cs cs asx = c'#cs'" and "upd_cs cs (asx@[a]) = []"
and "a ∈ get_return_edges c'" and "valid_edge c'"
and "∀a ∈ set asx'. intra_kind(kind a)"
proof(atomize_elim)
from assms
show "(∀a∈set as. intra_kind (kind a)) ∨
(∃asx a asx' Q p f c' cs'. as = asx@a#asx' ∧ same_level_path_aux cs asx ∧
kind a = Q↩⇘p⇙f ∧ upd_cs cs asx = c'#cs' ∧ upd_cs cs (asx@[a]) = [] ∧
a ∈ get_return_edges c' ∧ valid_edge c' ∧ (∀a∈set asx'. intra_kind (kind a)))"
proof(induct rule:slpa_induct)
case (slpa_empty cs)
have "∀a∈set []. intra_kind (kind a)" by simp
thus ?case by simp
next
case (slpa_intra cs a as)
note IH = ‹⟦upd_cs cs as = []; ∀c∈set cs. valid_edge c; ∀a'∈set as. valid_edge a'⟧
⟹ (∀a∈set as. intra_kind (kind a)) ∨
(∃asx a asx' Q p f c' cs'. as = asx@a#asx' ∧ same_level_path_aux cs asx ∧
kind a = Q↩⇘p⇙f ∧ upd_cs cs asx = c' # cs' ∧ upd_cs cs (asx@[a]) = [] ∧
a ∈ get_return_edges c' ∧ valid_edge c' ∧ (∀a∈set asx'. intra_kind (kind a)))›
from ‹∀a'∈set (a#as). valid_edge a'› have "∀a'∈set as. valid_edge a'" by simp
from ‹intra_kind (kind a)› ‹upd_cs cs (a#as) = []›
have "upd_cs cs as = []" by(fastforce simp:intra_kind_def)
from IH[OF this ‹∀c∈set cs. valid_edge c› ‹∀a'∈set as. valid_edge a'›] show ?case
proof
assume "∀a∈set as. intra_kind (kind a)"
with ‹intra_kind (kind a)› have "∀a'∈set (a#as). intra_kind (kind a')"
by simp
thus ?case by simp
next
assume "∃asx a asx' Q p f c' cs'. as = asx@a#asx' ∧ same_level_path_aux cs asx ∧
kind a = Q↩⇘p⇙f ∧ upd_cs cs asx = c'#cs' ∧ upd_cs cs (asx@[a]) = [] ∧
a ∈ get_return_edges c' ∧ valid_edge c' ∧
(∀a∈set asx'. intra_kind (kind a))"
then obtain asx a' Q p f asx' c' cs' where "as = asx@a'#asx'"
and "same_level_path_aux cs asx" and "upd_cs cs (asx@[a']) = []"
and "upd_cs cs asx = c'#cs'" and assms:"a' ∈ get_return_edges c'"
"kind a' = Q↩⇘p⇙f" "valid_edge c'" "∀a∈set asx'. intra_kind (kind a)"
by blast
from ‹as = asx@a'#asx'› have "a#as = (a#asx)@a'#asx'" by simp
moreover
from ‹intra_kind (kind a)› ‹same_level_path_aux cs asx›
have "same_level_path_aux cs (a#asx)" by(fastforce simp:intra_kind_def)
moreover
from ‹upd_cs cs asx = c'#cs'› ‹intra_kind (kind a)›
have "upd_cs cs (a#asx) = c'#cs'" by(fastforce simp:intra_kind_def)
moreover
from ‹upd_cs cs (asx@[a']) = []› ‹intra_kind (kind a)›
have "upd_cs cs ((a#asx)@[a']) = []" by(fastforce simp:intra_kind_def)
ultimately show ?case using assms by blast
qed
next
case (slpa_Call cs a as Q r p fs)
note IH = ‹⟦upd_cs (a#cs) as = []; ∀c∈set (a#cs). valid_edge c;
∀a'∈set as. valid_edge a'⟧ ⟹
(∀a'∈set as. intra_kind (kind a')) ∨
(∃asx a' asx' Q' p' f' c' cs'. as = asx@a'#asx' ∧
same_level_path_aux (a#cs) asx ∧ kind a' = Q'↩⇘p'⇙f' ∧
upd_cs (a#cs) asx = c'#cs' ∧ upd_cs (a#cs) (asx@[a']) = [] ∧
a' ∈ get_return_edges c' ∧ valid_edge c' ∧
(∀a'∈set asx'. intra_kind (kind a')))›
from ‹∀a'∈set (a#as). valid_edge a'› have "valid_edge a"
and "∀a'∈set as. valid_edge a'" by simp_all
from ‹∀c∈set cs. valid_edge c› ‹valid_edge a› have "∀c∈set (a#cs). valid_edge c"
by simp
from ‹upd_cs cs (a#as) = []› ‹kind a = Q:r↪⇘p⇙fs›
have "upd_cs (a#cs) as = []" by simp
from IH[OF this ‹∀c∈set (a#cs). valid_edge c› ‹∀a'∈set as. valid_edge a'›]
show ?case
proof
assume "∀a'∈set as. intra_kind (kind a')"
with ‹kind a = Q:r↪⇘p⇙fs› have "upd_cs cs (a#as) = a#cs"
by(fastforce intro:upd_cs_intra_path)
with ‹upd_cs cs (a#as) = []› have False by simp
thus ?case by simp
next
assume "∃asx a' asx' Q p f c' cs'. as = asx@a'#asx' ∧
same_level_path_aux (a#cs) asx ∧ kind a' = Q↩⇘p⇙f ∧
upd_cs (a#cs) asx = c'#cs' ∧ upd_cs (a#cs) (asx@[a']) = [] ∧
a' ∈ get_return_edges c' ∧ valid_edge c' ∧
(∀a∈set asx'. intra_kind (kind a))"
then obtain asx a' Q' p' f' asx' c' cs' where "as = asx@a'#asx'"
and "same_level_path_aux (a#cs) asx" and "upd_cs (a#cs) (asx@[a']) = []"
and "upd_cs (a#cs) asx = c'#cs'" and assms:"a' ∈ get_return_edges c'"
"kind a' = Q'↩⇘p'⇙f'" "valid_edge c'" "∀a∈set asx'. intra_kind (kind a)"
by blast
from ‹as = asx@a'#asx'› have "a#as = (a#asx)@a'#asx'" by simp
moreover
from ‹kind a = Q:r↪⇘p⇙fs› ‹same_level_path_aux (a#cs) asx›
have "same_level_path_aux cs (a#asx)" by simp
moreover
from ‹kind a = Q:r↪⇘p⇙fs› ‹upd_cs (a#cs) asx = c'#cs'›
have "upd_cs cs (a#asx) = c'#cs'" by simp
moreover
from ‹kind a = Q:r↪⇘p⇙fs› ‹upd_cs (a#cs) (asx@[a']) = []›
have "upd_cs cs ((a#asx)@[a']) = []" by simp
ultimately show ?case using assms by blast
qed
next
case (slpa_Return cs a as Q p f c' cs')
note IH = ‹⟦upd_cs cs' as = []; ∀c∈set cs'. valid_edge c;
∀a'∈set as. valid_edge a'⟧ ⟹
(∀a'∈set as. intra_kind (kind a')) ∨
(∃asx a' asx' Q' p' f' c'' cs''. as = asx@a'#asx' ∧
same_level_path_aux cs' asx ∧ kind a' = Q'↩⇘p'⇙f' ∧ upd_cs cs' asx = c''#cs'' ∧
upd_cs cs' (asx@[a']) = [] ∧ a' ∈ get_return_edges c'' ∧ valid_edge c'' ∧
(∀a'∈set asx'. intra_kind (kind a')))›
from ‹∀a'∈set (a#as). valid_edge a'› have "valid_edge a"
and "∀a'∈set as. valid_edge a'" by simp_all
from ‹∀c∈set cs. valid_edge c› ‹cs = c' # cs'›
have "valid_edge c'" and "∀c∈set cs'. valid_edge c" by simp_all
from ‹upd_cs cs (a#as) = []› ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
‹a ∈ get_return_edges c'› have "upd_cs cs' as = []" by simp
from IH[OF this ‹∀c∈set cs'. valid_edge c› ‹∀a'∈set as. valid_edge a'›] show ?case
proof
assume "∀a'∈set as. intra_kind (kind a')"
hence "upd_cs cs' as = cs'" by(rule upd_cs_intra_path)
with ‹upd_cs cs' as = []› have "cs' = []" by simp
with ‹cs = c'#cs'› ‹a ∈ get_return_edges c'› ‹kind a = Q↩⇘p⇙f›
have "upd_cs cs [a] = []" by simp
moreover
from ‹cs = c'#cs'› have "upd_cs cs [] ≠ []" by simp
moreover
have "same_level_path_aux cs []" by simp
ultimately show ?case
using ‹kind a = Q↩⇘p⇙f› ‹∀a'∈set as. intra_kind (kind a')› ‹cs = c'#cs'›
‹a ∈ get_return_edges c'› ‹valid_edge c'›
by fastforce
next
assume "∃asx a' asx' Q' p' f' c'' cs''. as = asx@a'#asx' ∧
same_level_path_aux cs' asx ∧ kind a' = Q'↩⇘p'⇙f' ∧ upd_cs cs' asx = c''#cs'' ∧
upd_cs cs' (asx@[a']) = [] ∧ a' ∈ get_return_edges c'' ∧ valid_edge c'' ∧
(∀a'∈set asx'. intra_kind (kind a'))"
then obtain asx a' asx' Q' p' f' c'' cs'' where "as = asx@a'#asx'"
and "same_level_path_aux cs' asx" and "upd_cs cs' asx = c''#cs''"
and "upd_cs cs' (asx@[a']) = []" and assms:"a' ∈ get_return_edges c''"
"kind a' = Q'↩⇘p'⇙f'" "valid_edge c''" "∀a'∈set asx'. intra_kind (kind a')"
by blast
from ‹as = asx@a'#asx'› have "a#as = (a#asx)@a'#asx'" by simp
moreover
from ‹same_level_path_aux cs' asx› ‹cs = c'#cs'› ‹a ∈ get_return_edges c'›
‹kind a = Q↩⇘p⇙f›
have "same_level_path_aux cs (a#asx)" by simp
moreover
from ‹upd_cs cs' asx = c''#cs''› ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
have "upd_cs cs (a#asx) = c''#cs''" by simp
moreover
from ‹upd_cs cs' (asx@[a']) = []› ‹cs = c'#cs'› ‹a ∈ get_return_edges c'›
‹kind a = Q↩⇘p⇙f›
have "upd_cs cs ((a#asx)@[a']) = []" by simp
ultimately show ?case using assms by blast
qed
qed
qed
lemma same_level_path_aux_valid_path_aux:
"same_level_path_aux cs as ⟹ valid_path_aux cs as"
by(induct rule:slpa_induct,auto split:edge_kind.split simp:intra_kind_def)
lemma same_level_path_aux_Append:
"⟦same_level_path_aux cs as; same_level_path_aux (upd_cs cs as) as'⟧
⟹ same_level_path_aux cs (as@as')"
by(induct rule:slpa_induct,auto simp:intra_kind_def)
lemma same_level_path_aux_callstack_Append:
"same_level_path_aux cs as ⟹ same_level_path_aux (cs@cs') as"
by(induct rule:slpa_induct,auto simp:intra_kind_def)
lemma same_level_path_upd_cs_callstack_Append:
"⟦same_level_path_aux cs as; upd_cs cs as = cs'⟧
⟹ upd_cs (cs@cs'') as = (cs'@cs'')"
by(induct rule:slpa_induct,auto split:edge_kind.split simp:intra_kind_def)
lemma slpa_split:
assumes "same_level_path_aux cs as" and "as = xs@ys" and "upd_cs cs xs = []"
shows "same_level_path_aux cs xs" and "same_level_path_aux [] ys"
using assms
proof(induct arbitrary:xs ys rule:slpa_induct)
case (slpa_empty cs) case 1
from ‹[] = xs@ys› show ?case by simp
next
case (slpa_empty cs) case 2
from ‹[] = xs@ys› show ?case by simp
next
case (slpa_intra cs a as)
note IH1 = ‹⋀xs ys. ⟦as = xs@ys; upd_cs cs xs = []⟧ ⟹ same_level_path_aux cs xs›
note IH2 = ‹⋀xs ys. ⟦as = xs@ys; upd_cs cs xs = []⟧ ⟹ same_level_path_aux [] ys›
{ case 1
show ?case
proof(cases xs)
case Nil thus ?thesis by simp
next
case (Cons x' xs')
with ‹a#as = xs@ys› have "a = x'" and "as = xs'@ys" by simp_all
with ‹upd_cs cs xs = []› Cons ‹intra_kind (kind a)›
have "upd_cs cs xs' = []" by(fastforce simp:intra_kind_def)
from IH1[OF ‹as = xs'@ys› this] have "same_level_path_aux cs xs'" .
with ‹a = x'› ‹intra_kind (kind a)› Cons
show ?thesis by(fastforce simp:intra_kind_def)
qed
next
case 2
show ?case
proof(cases xs)
case Nil
with ‹upd_cs cs xs = []› have "cs = []" by fastforce
with Nil ‹a#as = xs@ys› ‹same_level_path_aux cs as› ‹intra_kind (kind a)›
show ?thesis by(cases ys,auto simp:intra_kind_def)
next
case (Cons x' xs')
with ‹a#as = xs@ys› have "a = x'" and "as = xs'@ys" by simp_all
with ‹upd_cs cs xs = []› Cons ‹intra_kind (kind a)›
have "upd_cs cs xs' = []" by(fastforce simp:intra_kind_def)
from IH2[OF ‹as = xs'@ys› this] show ?thesis .
qed
}
next
case (slpa_Call cs a as Q r p fs)
note IH1 = ‹⋀xs ys. ⟦as = xs@ys; upd_cs (a#cs) xs = []⟧
⟹ same_level_path_aux (a#cs) xs›
note IH2 = ‹⋀xs ys. ⟦as = xs@ys; upd_cs (a#cs) xs = []⟧
⟹ same_level_path_aux [] ys›
{ case 1
show ?case
proof(cases xs)
case Nil thus ?thesis by simp
next
case (Cons x' xs')
with ‹a#as = xs@ys› have "a = x'" and "as = xs'@ys" by simp_all
with ‹upd_cs cs xs = []› Cons ‹kind a = Q:r↪⇘p⇙fs›
have "upd_cs (a#cs) xs' = []" by simp
from IH1[OF ‹as = xs'@ys› this] have "same_level_path_aux (a#cs) xs'" .
with ‹a = x'› ‹kind a = Q:r↪⇘p⇙fs› Cons show ?thesis by simp
qed
next
case 2
show ?case
proof(cases xs)
case Nil
with ‹upd_cs cs xs = []› have "cs = []" by fastforce
with Nil ‹a#as = xs@ys› ‹same_level_path_aux (a#cs) as› ‹kind a = Q:r↪⇘p⇙fs›
show ?thesis by(cases ys) auto
next
case (Cons x' xs')
with ‹a#as = xs@ys› have "a = x'" and "as = xs'@ys" by simp_all
with ‹upd_cs cs xs = []› Cons ‹kind a = Q:r↪⇘p⇙fs›
have "upd_cs (a#cs) xs' = []" by simp
from IH2[OF ‹as = xs'@ys› this] show ?thesis .
qed
}
next
case (slpa_Return cs a as Q p f c' cs')
note IH1 = ‹⋀xs ys. ⟦as = xs@ys; upd_cs cs' xs = []⟧ ⟹ same_level_path_aux cs' xs›
note IH2 = ‹⋀xs ys. ⟦as = xs@ys; upd_cs cs' xs = []⟧ ⟹ same_level_path_aux [] ys›
{ case 1
show ?case
proof(cases xs)
case Nil thus ?thesis by simp
next
case (Cons x' xs')
with ‹a#as = xs@ys› have "a = x'" and "as = xs'@ys" by simp_all
with ‹upd_cs cs xs = []› Cons ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
have "upd_cs cs' xs' = []" by simp
from IH1[OF ‹as = xs'@ys› this] have "same_level_path_aux cs' xs'" .
with ‹a = x'› ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'› ‹a ∈ get_return_edges c'› Cons
show ?thesis by simp
qed
next
case 2
show ?case
proof(cases xs)
case Nil
with ‹upd_cs cs xs = []› have "cs = []" by fastforce
with ‹cs = c'#cs'› have False by simp
thus ?thesis by simp
next
case (Cons x' xs')
with ‹a#as = xs@ys› have "a = x'" and "as = xs'@ys" by simp_all
with ‹upd_cs cs xs = []› Cons ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
have "upd_cs cs' xs' = []" by simp
from IH2[OF ‹as = xs'@ys› this] show ?thesis .
qed
}
qed
lemma slpa_number_Calls_eq_number_Returns:
"⟦same_level_path_aux cs as; upd_cs cs as = [];
∀a ∈ set as. valid_edge a; ∀c ∈ set cs. valid_edge c⟧
⟹ length [a←as@cs. ∃Q r p fs. kind a = Q:r↪⇘p⇙fs] =
length [a←as. ∃Q p f. kind a = Q↩⇘p⇙f]"
apply(induct rule:slpa_induct)
by(auto split:list.split edge_kind.split intro:only_call_get_return_edges
simp:intra_kind_def)
lemma slpa_get_proc:
"⟦same_level_path_aux cs as; upd_cs cs as = []; n -as→* n';
∀c ∈ set cs. valid_edge c⟧
⟹ (if cs = [] then get_proc n else get_proc(last(sourcenodes cs))) = get_proc n'"
proof(induct arbitrary:n rule:slpa_induct)
case slpa_empty thus ?case by fastforce
next
case (slpa_intra cs a as)
note IH = ‹⋀n. ⟦upd_cs cs as = []; n -as→* n'; ∀a∈set cs. valid_edge a⟧
⟹ (if cs = [] then get_proc n else get_proc (last (sourcenodes cs))) =
get_proc n'›
from ‹intra_kind (kind a)› ‹upd_cs cs (a#as) = []›
have "upd_cs cs as = []" by(cases "kind a",auto simp:intra_kind_def)
from ‹n -a#as→* n'› have "n -[]@a#as→* n'" by simp
hence "valid_edge a" and "n = sourcenode a" and "targetnode a -as→* n'"
by(fastforce dest:path_split)+
from ‹valid_edge a› ‹intra_kind (kind a)› ‹ n = sourcenode a›
have "get_proc n = get_proc (targetnode a)"
by(fastforce intro:get_proc_intra)
from IH[OF ‹upd_cs cs as = []› ‹targetnode a -as→* n'› ‹∀a∈set cs. valid_edge a›]
have "(if cs = [] then get_proc (targetnode a)
else get_proc (last (sourcenodes cs))) = get_proc n'" .
with ‹get_proc n = get_proc (targetnode a)› show ?case by auto
next
case (slpa_Call cs a as Q r p fs)
note IH = ‹⋀n. ⟦upd_cs (a#cs) as = []; n -as→* n'; ∀a∈set (a#cs). valid_edge a⟧
⟹ (if a#cs = [] then get_proc n else get_proc (last (sourcenodes (a#cs)))) =
get_proc n'›
from ‹kind a = Q:r↪⇘p⇙fs› ‹upd_cs cs (a#as) = []›
have "upd_cs (a#cs) as = []" by simp
from ‹n -a#as→* n'› have "n -[]@a#as→* n'" by simp
hence "valid_edge a" and "n = sourcenode a" and "targetnode a -as→* n'"
by(fastforce dest:path_split)+
from ‹valid_edge a› ‹∀a∈set cs. valid_edge a› have "∀a∈set (a#cs). valid_edge a"
by simp
from IH[OF ‹upd_cs (a#cs) as = []› ‹targetnode a -as→* n'› this]
have "get_proc (last (sourcenodes (a#cs))) = get_proc n'" by simp
with ‹n = sourcenode a› show ?case by(cases cs,auto simp:sourcenodes_def)
next
case (slpa_Return cs a as Q p f c' cs')
note IH = ‹⋀n. ⟦upd_cs cs' as = []; n -as→* n'; ∀a∈set cs'. valid_edge a⟧
⟹ (if cs' = [] then get_proc n else get_proc (last (sourcenodes cs'))) =
get_proc n'›
from ‹∀a∈set cs. valid_edge a› ‹cs = c'#cs'›
have "valid_edge c'" and "∀a∈set cs'. valid_edge a" by simp_all
from ‹kind a = Q↩⇘p⇙f› ‹upd_cs cs (a#as) = []› ‹cs = c'#cs'›
have "upd_cs cs' as = []" by simp
from ‹n -a#as→* n'› have "n -[]@a#as→* n'" by simp
hence "n = sourcenode a" and "targetnode a -as→* n'"
by(fastforce dest:path_split)+
from ‹valid_edge c'› ‹a ∈ get_return_edges c'›
have "get_proc (sourcenode c') = get_proc (targetnode a)"
by(rule get_proc_get_return_edge)
from IH[OF ‹upd_cs cs' as = []› ‹targetnode a -as→* n'› ‹∀a∈set cs'. valid_edge a›]
have "(if cs' = [] then get_proc (targetnode a)
else get_proc (last (sourcenodes cs'))) = get_proc n'" .
with ‹cs = c'#cs'› ‹get_proc (sourcenode c') = get_proc (targetnode a)›
show ?case by(auto simp:sourcenodes_def)
qed
lemma slpa_get_return_edges:
"⟦same_level_path_aux cs as; cs ≠ []; upd_cs cs as = [];
∀xs ys. as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs xs ≠ []⟧
⟹ last as ∈ get_return_edges (last cs)"
proof(induct rule:slpa_induct)
case (slpa_empty cs)
from ‹cs ≠ []› ‹upd_cs cs [] = []› have False by fastforce
thus ?case by simp
next
case (slpa_intra cs a as)
note IH = ‹⟦cs ≠ []; upd_cs cs as = [];
∀xs ys. as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs xs ≠ []⟧
⟹ last as ∈ get_return_edges (last cs)›
show ?case
proof(cases "as = []")
case True
with ‹intra_kind (kind a)› ‹upd_cs cs (a#as) = []› have "cs = []"
by(fastforce simp:intra_kind_def)
with ‹cs ≠ []› have False by simp
thus ?thesis by simp
next
case False
from ‹intra_kind (kind a)› ‹upd_cs cs (a#as) = []› have "upd_cs cs as = []"
by(fastforce simp:intra_kind_def)
from ‹∀xs ys. a#as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs xs ≠ []› ‹intra_kind (kind a)›
have "∀xs ys. as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs xs ≠ []"
apply(clarsimp,erule_tac x="a#xs" in allE)
by(auto simp:intra_kind_def)
from IH[OF ‹cs ≠ []› ‹upd_cs cs as = []› this]
have "last as ∈ get_return_edges (last cs)" .
with False show ?thesis by simp
qed
next
case (slpa_Call cs a as Q r p fs)
note IH = ‹⟦a#cs ≠ []; upd_cs (a#cs) as = [];
∀xs ys. as = xs@ys ∧ ys ≠ [] ⟶ upd_cs (a#cs) xs ≠ []⟧
⟹ last as ∈ get_return_edges (last (a#cs))›
show ?case
proof(cases "as = []")
case True
with ‹kind a = Q:r↪⇘p⇙fs› ‹upd_cs cs (a#as) = []› have "a#cs = []" by simp
thus ?thesis by simp
next
case False
from ‹kind a = Q:r↪⇘p⇙fs› ‹upd_cs cs (a#as) = []› have "upd_cs (a#cs) as = []"
by simp
from ‹∀xs ys. a#as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs xs ≠ []› ‹kind a = Q:r↪⇘p⇙fs›
have "∀xs ys. as = xs@ys ∧ ys ≠ [] ⟶ upd_cs (a#cs) xs ≠ []"
by(clarsimp,erule_tac x="a#xs" in allE,simp)
from IH[OF _ ‹upd_cs (a#cs) as = []› this]
have "last as ∈ get_return_edges (last (a#cs))" by simp
with False ‹cs ≠ []› show ?thesis by(simp add:targetnodes_def)
qed
next
case (slpa_Return cs a as Q p f c' cs')
note IH = ‹⟦cs' ≠ []; upd_cs cs' as = [];
∀xs ys. as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs' xs ≠ []⟧
⟹ last as ∈ get_return_edges (last cs')›
show ?case
proof(cases "as = []")
case True
with ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'› ‹upd_cs cs (a#as) = []›
have "cs' = []" by simp
with ‹cs = c'#cs'› ‹a ∈ get_return_edges c'› True
show ?thesis by simp
next
case False
from ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'› ‹upd_cs cs (a#as) = []›
have "upd_cs cs' as = []" by simp
show ?thesis
proof(cases "cs' = []")
case True
with ‹cs = c'#cs'› ‹kind a = Q↩⇘p⇙f› have "upd_cs cs [a] = []" by simp
with ‹∀xs ys. a#as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs xs ≠ []› False have False
apply(erule_tac x="[a]" in allE) by fastforce
thus ?thesis by simp
next
case False
from ‹∀xs ys. a#as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs xs ≠ []›
‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
have "∀xs ys. as = xs@ys ∧ ys ≠ [] ⟶ upd_cs cs' xs ≠ []"
by(clarsimp,erule_tac x="a#xs" in allE,simp)
from IH[OF False ‹upd_cs cs' as = []› this]
have "last as ∈ get_return_edges (last cs')" .
with ‹as ≠ []› False ‹cs = c'#cs'› show ?thesis by(simp add:targetnodes_def)
qed
qed
qed
lemma slpa_callstack_length:
assumes "same_level_path_aux cs as" and "length cs = length cfsx"
obtains cfx cfsx' where "transfers (kinds as) (cfsx@cf#cfs) = cfsx'@cfx#cfs"
and "transfers (kinds as) (cfsx@cf#cfs') = cfsx'@cfx#cfs'"
and "length cfsx' = length (upd_cs cs as)"
proof(atomize_elim)
from assms show "∃cfsx' cfx. transfers (kinds as) (cfsx@cf#cfs) = cfsx'@cfx#cfs ∧
transfers (kinds as) (cfsx@cf#cfs') = cfsx'@cfx#cfs' ∧
length cfsx' = length (upd_cs cs as)"
proof(induct arbitrary:cfsx cf rule:slpa_induct)
case (slpa_empty cs) thus ?case by(simp add:kinds_def)
next
case (slpa_intra cs a as)
note IH = ‹⋀cfsx cf. length cs = length cfsx ⟹
∃cfsx' cfx. transfers (kinds as) (cfsx@cf#cfs) = cfsx'@cfx#cfs ∧
transfers (kinds as) (cfsx@cf#cfs') = cfsx'@cfx#cfs' ∧
length cfsx' = length (upd_cs cs as)›
from ‹intra_kind (kind a)›
have "length (upd_cs cs (a#as)) = length (upd_cs cs as)"
by(fastforce simp:intra_kind_def)
show ?case
proof(cases cfsx)
case Nil
with ‹length cs = length cfsx› have "length cs = length []" by simp
from Nil ‹intra_kind (kind a)›
obtain cfx where transfer:"transfer (kind a) (cfsx@cf#cfs) = []@cfx#cfs"
"transfer (kind a) (cfsx@cf#cfs') = []@cfx#cfs'"
by(cases "kind a",auto simp:kinds_def intra_kind_def)
from IH[OF ‹length cs = length []›] obtain cfsx' cfx'
where "transfers (kinds as) ([]@cfx#cfs) = cfsx'@cfx'#cfs"
and "transfers (kinds as) ([]@cfx#cfs') = cfsx'@cfx'#cfs'"
and "length cfsx' = length (upd_cs cs as)" by blast
with ‹length (upd_cs cs (a#as)) = length (upd_cs cs as)› transfer
show ?thesis by(fastforce simp:kinds_def)
next
case (Cons x xs)
with ‹intra_kind (kind a)› obtain cfx'
where transfer:"transfer (kind a) (cfsx@cf#cfs) = (cfx'#xs)@cf#cfs"
"transfer (kind a) (cfsx@cf#cfs') = (cfx'#xs)@cf#cfs'"
by(cases "kind a",auto simp:kinds_def intra_kind_def)
from ‹length cs = length cfsx› Cons have "length cs = length (cfx'#xs)"
by simp
from IH[OF this] obtain cfs'' cf''
where "transfers (kinds as) ((cfx'#xs)@cf#cfs) = cfs''@cf''#cfs"
and "transfers (kinds as) ((cfx'#xs)@cf#cfs') = cfs''@cf''#cfs'"
and "length cfs'' = length (upd_cs cs as)" by blast
with ‹length (upd_cs cs (a#as)) = length (upd_cs cs as)› transfer
show ?thesis by(fastforce simp:kinds_def)
qed
next
case (slpa_Call cs a as Q r p fs)
note IH = ‹⋀cfsx cf. length (a#cs) = length cfsx ⟹
∃cfsx' cfx. transfers (kinds as) (cfsx@cf#cfs) = cfsx'@cfx#cfs ∧
transfers (kinds as) (cfsx@cf#cfs') = cfsx'@cfx#cfs' ∧
length cfsx' = length (upd_cs (a#cs) as)›
from ‹kind a = Q:r↪⇘p⇙fs›
obtain cfx where transfer:"transfer (kind a) (cfsx@cf#cfs) = (cfx#cfsx)@cf#cfs"
"transfer (kind a) (cfsx@cf#cfs') = (cfx#cfsx)@cf#cfs'"
by(cases cfsx) auto
from ‹length cs = length cfsx› have "length (a#cs) = length (cfx#cfsx)"
by simp
from IH[OF this] obtain cfsx' cfx'
where "transfers (kinds as) ((cfx#cfsx)@cf#cfs) = cfsx'@cfx'#cfs"
and "transfers (kinds as) ((cfx#cfsx)@cf#cfs') = cfsx'@cfx'#cfs'"
and "length cfsx' = length (upd_cs (a#cs) as)" by blast
with ‹kind a = Q:r↪⇘p⇙fs› transfer show ?case by(fastforce simp:kinds_def)
next
case (slpa_Return cs a as Q p f c' cs')
note IH = ‹⋀cfsx cf. length cs' = length cfsx ⟹
∃cfsx' cfx. transfers (kinds as) (cfsx@cf#cfs) = cfsx'@cfx#cfs ∧
transfers (kinds as) (cfsx@cf#cfs') = cfsx'@cfx#cfs' ∧
length cfsx' = length (upd_cs cs' as)›
from ‹kind a = Q↩⇘p⇙f› ‹cs = c'#cs'›
have "length (upd_cs cs (a#as)) = length (upd_cs cs' as)" by simp
show ?case
proof(cases cs')
case Nil
with ‹cs = c'#cs'› ‹length cs = length cfsx› obtain cfx
where [simp]:"cfsx = [cfx]" by(cases cfsx) auto
with ‹kind a = Q↩⇘p⇙f› obtain cf'
where transfer:"transfer (kind a) (cfsx@cf#cfs) = []@cf'#cfs"
"transfer (kind a) (cfsx@cf#cfs') = []@cf'#cfs'"
by fastforce
from Nil have "length cs' = length []" by simp
from IH[OF this] obtain cfsx' cfx'
where "transfers (kinds as) ([]@cf'#cfs) = cfsx'@cfx'#cfs"
and "transfers (kinds as) ([]@cf'#cfs') = cfsx'@cfx'#cfs'"
and "length cfsx' = length (upd_cs cs' as)" by blast
with ‹length (upd_cs cs (a#as)) = length (upd_cs cs' as)› transfer
show ?thesis by(fastforce simp:kinds_def)
next
case (Cons cx csx)
with ‹cs = c'#cs'› ‹length cs = length cfsx› obtain x x' xs
where [simp]:"cfsx = x#x'#xs" and "length xs = length csx"
by(cases cfsx,auto,case_tac list,fastforce+)
with ‹kind a = Q↩⇘p⇙f› obtain cf'
where transfer:"transfer (kind a) ((x#x'#xs)@cf#cfs) = (cf'#xs)@cf#cfs"
"transfer (kind a) ((x#x'#xs)@cf#cfs') = (cf'#xs)@cf#cfs'"
by fastforce
from ‹cs = c'#cs'› ‹length cs = length cfsx› have "length cs' = length (cf'#xs)"
by simp
from IH[OF this] obtain cfsx' cfx
where "transfers (kinds as) ((cf'#xs)@cf#cfs) = cfsx'@cfx#cfs"
and "transfers (kinds as) ((cf'#xs)@cf#cfs') = cfsx'@cfx#cfs'"
and "length cfsx' = length (upd_cs cs' as)" by blast
with ‹length (upd_cs cs (a#as)) = length (upd_cs cs' as)› transfer
show ?thesis by(fastforce simp:kinds_def)
qed
qed
qed
lemma slpa_snoc_intra:
"⟦same_level_path_aux cs as; intra_kind (kind a)⟧
⟹ same_level_path_aux cs (as@[a])"
by(induct rule:slpa_induct,auto simp:intra_kind_def)
lemma slpa_snoc_Call:
"⟦same_level_path_aux cs as; kind a = Q:r↪⇘p⇙fs⟧
⟹ same_level_path_aux cs (as@[a])"
by(induct rule:slpa_induct,auto simp:intra_kind_def)
lemma vpa_Main_slpa:
"⟦valid_path_aux cs as; m -as→* m'; as ≠ [];
valid_call_list cs m; get_proc m' = Main;
get_proc (case cs of [] ⇒ m | _ ⇒ sourcenode (last cs)) = Main⟧
⟹ same_level_path_aux cs as ∧ upd_cs cs as = []"
proof(induct arbitrary:m rule:vpa_induct)
case (vpa_empty cs) thus ?case by simp
next
case (vpa_intra cs a as)
note IH = ‹⋀m. ⟦m -as→* m'; as ≠ []; valid_call_list cs m; get_proc m' = Main;
get_proc (case cs of [] ⇒ m | a # list ⇒ sourcenode (last cs)) = Main⟧
⟹ same_level_path_aux cs as ∧ upd_cs cs as = []›
from ‹m -a # as→* m'› have "sourcenode a = m" and "valid_edge a"
and "targetnode a -as→* m'" by(auto elim:path_split_Cons)
from ‹valid_edge a› ‹intra_kind (kind a)›
have "get_proc (sourcenode a) = get_proc (targetnode a)" by(rule get_proc_intra)
show ?case
proof(cases "as = []")
case True
with ‹targetnode a -as→* m'› have "targetnode a = m'" by fastforce
with ‹get_proc (sourcenode a) = get_proc (targetnode a)›
‹sourcenode a = m› ‹get_proc m' = Main›
have "get_proc m = Main" by simp
have "cs = []"
proof(cases cs)
case Cons
with ‹valid_call_list cs m›
obtain c Q r p fs where "valid_edge c" and "kind c = Q:r↪⇘get_proc m⇙fs"
by(auto simp:valid_call_list_def,erule_tac x="[]" in allE,
auto simp:sourcenodes_def)
with ‹get_proc m = Main› have "kind c = Q:r↪⇘Main⇙fs" by simp
with ‹valid_edge c› have False by(rule Main_no_call_target)
thus ?thesis by simp
qed simp
with True ‹intra_kind (kind a)› show ?thesis by(fastforce simp:intra_kind_def)
next
case False
from ‹valid_call_list cs m› ‹sourcenode a = m›
‹get_proc (sourcenode a) = get_proc (targetnode a)›
have "valid_call_list cs (targetnode a)"
apply(clarsimp simp:valid_call_list_def)
apply(erule_tac x="cs'" in allE)
apply(erule_tac x="c" in allE)
by(auto split:list.split)
from ‹get_proc (case cs of [] ⇒ m | _ ⇒ sourcenode (last cs)) = Main›
‹sourcenode a = m› ‹get_proc (sourcenode a) = get_proc (targetnode a)›
have "get_proc (case cs of [] ⇒ targetnode a | _ ⇒ sourcenode (last cs)) = Main"
by(cases cs) auto
from IH[OF ‹targetnode a -as→* m'› False ‹valid_call_list cs (targetnode a)›
‹get_proc m' = Main› this]
have "same_level_path_aux cs as ∧ upd_cs cs as = []" .
with ‹intra_kind (kind a)› show ?thesis by(fastforce simp:intra_kind_def)
qed
next
case (vpa_Call cs a as Q r p fs)
note IH = ‹⋀m. ⟦m -as→* m'; as ≠ []; valid_call_list (a # cs) m;
get_proc m' = Main;
get_proc (case a # cs of [] ⇒ m | _ ⇒ sourcenode (last (a # cs))) = Main⟧
⟹ same_level_path_aux (a # cs) as ∧ upd_cs (a # cs) as = []›
from ‹m -a # as→* m'› have "sourcenode a = m" and "valid_edge a"
and "targetnode a -as→* m'" by(auto elim:path_split_Cons)
from ‹valid_edge a› ‹kind a = Q:r↪⇘p⇙fs› have "get_proc (targetnode a) = p"
by(rule get_proc_call)
show ?case
proof(cases "as = []")
case True
with ‹targetnode a -as→* m'› have "targetnode a = m'" by fastforce
with ‹get_proc (targetnode a) = p› ‹get_proc m' = Main› ‹kind a = Q:r↪⇘p⇙fs›
have "kind a = Q:r↪⇘Main⇙fs" by simp
with ‹valid_edge a› have False by(rule Main_no_call_target)
thus ?thesis by simp
next
case False
from ‹get_proc (targetnode a) = p› ‹valid_call_list cs m› ‹valid_edge a›
‹kind a = Q:r↪⇘p⇙fs› ‹sourcenode a = m›
have "valid_call_list (a # cs) (targetnode a)"
apply(clarsimp simp:valid_call_list_def)
apply(case_tac cs') apply auto
apply(erule_tac x="list" in allE)
by(case_tac list)(auto simp:sourcenodes_def)
from ‹get_proc (case cs of [] ⇒ m | _ ⇒ sourcenode (last cs)) = Main›
‹sourcenode a = m›
have "get_proc (case a # cs of [] ⇒ targetnode a
| _ ⇒ sourcenode (last (a # cs))) = Main"
by(cases cs) auto
from IH[OF ‹targetnode a -as→* m'› False ‹valid_call_list (a#cs) (targetnode a)›
‹get_proc m' = Main› this]
have "same_level_path_aux (a # cs) as ∧ upd_cs (a # cs) as = []" .
with ‹kind a = Q:r↪⇘p⇙fs› show ?thesis by simp
qed
next
case (vpa_ReturnEmpty cs a as Q p f)
note IH = ‹⋀m. ⟦m -as→* m'; as ≠ []; valid_call_list [] m; get_proc m' = Main;
get_proc (case [] of [] ⇒ m | a # list ⇒ sourcenode (last [])) = Main⟧
⟹ same_level_path_aux [] as ∧ upd_cs [] as = []›
from ‹m -a # as→* m'› have "sourcenode a = m" and "valid_edge a"
and "targetnode a -as→* m'" by(auto elim:path_split_Cons)
from ‹valid_edge a› ‹kind a = Q↩⇘p⇙f› have "get_proc (sourcenode a) = p"
by(rule get_proc_return)
from ‹get_proc (case cs of [] ⇒ m | a # list ⇒ sourcenode (last cs)) = Main›
‹cs = []›
have "get_proc m = Main" by simp
with ‹sourcenode a = m› ‹get_proc (sourcenode a) = p› have "p = Main" by simp
with ‹kind a = Q↩⇘p⇙f› have "kind a = Q↩⇘Main⇙f" by simp
with ‹valid_edge a› have False by(rule Main_no_return_source)
thus ?case by simp
next
case (vpa_ReturnCons cs a as Q p f c' cs')
note IH = ‹⋀m. ⟦m -as→* m'; as ≠ []; valid_call_list cs' m; get_proc m' = Main;
get_proc (case cs' of [] ⇒ m | a # list ⇒ sourcenode (last cs')) = Main⟧
⟹ same_level_path_aux cs' as ∧ upd_cs cs' as = []›
from ‹m -a # as→* m'› have "sourcenode a = m" and "valid_edge a"
and "targetnode a -as→* m'" by(auto elim:path_split_Cons)
from ‹valid_edge a› ‹kind a = Q↩⇘p⇙f› have "get_proc (sourcenode a) = p"
by(rule get_proc_return)
from ‹valid_call_list cs m› ‹cs = c' # cs'›
have "valid_edge c'"
by(auto simp:valid_call_list_def,erule_tac x="[]" in allE,auto)
from ‹valid_edge c'› ‹a ∈ get_return_edges c'›
have "get_proc (sourcenode c') = get_proc (targetnode a)"
by(rule get_proc_get_return_edge)
show ?case
proof(cases "as = []")
case True
with ‹targetnode a -as→* m'› have "targetnode a = m'" by fastforce
with ‹get_proc m' = Main› have "get_proc (targetnode a) = Main" by simp
from ‹get_proc (sourcenode c') = get_proc (targetnode a)›
‹get_proc (targetnode a) = Main›
have "get_proc (sourcenode c') = Main" by simp
have "cs' = []"
proof(cases cs')
case (Cons cx csx)
with ‹cs = c' # cs'› ‹valid_call_list cs m›
obtain Qx rx fsx where "valid_edge cx"
and "kind cx = Qx:rx↪⇘get_proc (sourcenode c')⇙fsx"
by(auto simp:valid_call_list_def,erule_tac x="[c']" in allE,
auto simp:sourcenodes_def)
with ‹get_proc (sourcenode c') = Main› have "kind cx = Qx:rx↪⇘Main⇙fsx" by simp
with ‹valid_edge cx› have False by(rule Main_no_call_target)
thus ?thesis by simp
qed simp
with True ‹cs = c' # cs'› ‹a ∈ get_return_edges c'› ‹kind a = Q↩⇘p⇙f›
show ?thesis by simp
next
case False
from ‹valid_call_list cs m› ‹cs = c' # cs'›
‹get_proc (sourcenode c') = get_proc (targetnode a)›
have "valid_call_list cs' (targetnode a)"
apply(clarsimp simp:valid_call_list_def)
apply(hypsubst_thin)
apply(erule_tac x="c' # cs'" in allE)
by(case_tac cs')(auto simp:sourcenodes_def)
from ‹get_proc (case cs of [] ⇒ m | a # list ⇒ sourcenode (last cs)) = Main›
‹cs = c' # cs'› ‹get_proc (sourcenode c') = get_proc (targetnode a)›
have "get_proc (case cs' of [] ⇒ targetnode a
| _ ⇒ sourcenode (last cs')) = Main"
by(cases cs') auto
from IH[OF ‹targetnode a -as→* m'› False ‹valid_call_list cs' (targetnode a)›
‹get_proc m' = Main› this]
have "same_level_path_aux cs' as ∧ upd_cs cs' as = []" .
with ‹kind a = Q↩⇘p⇙f› ‹cs = c' # cs'› ‹a ∈ get_return_edges c'›
show ?thesis by simp
qed
qed
definition same_level_path :: "'edge list ⇒ bool"
where "same_level_path as ≡ same_level_path_aux [] as ∧ upd_cs [] as = []"
lemma same_level_path_valid_path:
"same_level_path as ⟹ valid_path as"
by(fastforce intro:same_level_path_aux_valid_path_aux
simp:same_level_path_def valid_path_def)
lemma same_level_path_Append:
"⟦same_level_path as; same_level_path as'⟧ ⟹ same_level_path (as@as')"
by(fastforce elim:same_level_path_aux_Append upd_cs_Append simp:same_level_path_def)
lemma same_level_path_number_Calls_eq_number_Returns:
"⟦same_level_path as; ∀a ∈ set as. valid_edge a⟧ ⟹
length [a←as. ∃Q r p fs. kind a = Q:r↪⇘p⇙fs] = length [a←as. ∃Q p f. kind a = Q↩⇘p⇙f]"
by(fastforce dest:slpa_number_Calls_eq_number_Returns simp:same_level_path_def)
lemma same_level_path_valid_path_Append:
"⟦same_level_path as; valid_path as'⟧ ⟹ valid_path (as@as')"
by(fastforce intro:valid_path_aux_Append elim:same_level_path_aux_valid_path_aux
simp:valid_path_def same_level_path_def)
lemma valid_path_same_level_path_Append:
"⟦valid_path as; same_level_path as'⟧ ⟹ valid_path (as@as')"
apply(auto simp:valid_path_def same_level_path_def)
apply(erule valid_path_aux_Append)
by(fastforce intro!:same_level_path_aux_valid_path_aux
dest:same_level_path_aux_callstack_Append)
lemma intras_same_level_path:
assumes "∀a ∈ set as. intra_kind(kind a)" shows "same_level_path as"
proof -
from ‹∀a ∈ set as. intra_kind(kind a)› have "same_level_path_aux [] as"
by(induct as)(auto simp:intra_kind_def)
moreover
from ‹∀a ∈ set as. intra_kind(kind a)› have "upd_cs [] as = []"
by(induct as)(auto simp:intra_kind_def)
ultimately show ?thesis by(simp add:same_level_path_def)
qed
definition same_level_path' :: "'node ⇒ 'edge list ⇒ 'node ⇒ bool"
(‹_ -_→⇘sl⇙* _› [51,0,0] 80)
where slp_def:"n -as→⇘sl⇙* n' ≡ n -as→* n' ∧ same_level_path as"
lemma slp_vp: "n -as→⇘sl⇙* n' ⟹ n -as→⇩√* n'"
by(fastforce intro:same_level_path_valid_path simp:slp_def vp_def)
lemma intra_path_slp: "n -as→⇩ι* n' ⟹ n -as→⇘sl⇙* n'"
by(fastforce intro:intras_same_level_path simp:slp_def intra_path_def)
lemma slp_Append:
"⟦n -as→⇘sl⇙* n''; n'' -as'→⇘sl⇙* n'⟧ ⟹ n -as@as'→⇘sl⇙* n'"
by(fastforce simp:slp_def intro:path_Append same_level_path_Append)
lemma slp_vp_Append:
"⟦n -as→⇘sl⇙* n''; n'' -as'→⇩√* n'⟧ ⟹ n -as@as'→⇩√* n'"
by(fastforce simp:slp_def vp_def intro:path_Append same_level_path_valid_path_Append)
lemma vp_slp_Append:
"⟦n -as→⇩√* n''; n'' -as'→⇘sl⇙* n'⟧ ⟹ n -as@as'→⇩√* n'"
by(fastforce simp:slp_def vp_def intro:path_Append valid_path_same_level_path_Append)
lemma slp_get_proc:
"n -as→⇘sl⇙* n' ⟹ get_proc n = get_proc n'"
by(fastforce dest:slpa_get_proc simp:same_level_path_def slp_def)
lemma same_level_path_inner_path:
assumes "n -as→⇘sl⇙* n'"
obtains as' where "n -as'→⇩ι* n'" and "set(sourcenodes as') ⊆ set(sourcenodes as)"
proof(atomize_elim)
from ‹n -as→⇘sl⇙* n'› have "n -as→* n'" and "same_level_path as"
by(simp_all add:slp_def)
from ‹same_level_path as› have "same_level_path_aux [] as" and "upd_cs [] as = []"
by(simp_all add:same_level_path_def)
from ‹n -as→* n'› ‹same_level_path_aux [] as› ‹upd_cs [] as = []›
show "∃as'. n -as'→⇩ι* n' ∧ set(sourcenodes as') ⊆ set(sourcenodes as)"
proof(induct as arbitrary:n rule:length_induct)
fix as n
assume IH:"∀as''. length as'' < length as ⟶
(∀n''. n'' -as''→* n' ⟶ same_level_path_aux [] as'' ⟶
upd_cs [] as'' = [] ⟶
(∃as'. n'' -as'→⇩ι* n' ∧ set (sourcenodes as') ⊆ set (sourcenodes as'')))"
and "n -as→* n'" and "same_level_path_aux [] as" and "upd_cs [] as = []"
show "∃as'. n -as'→⇩ι* n' ∧ set (sourcenodes as') ⊆ set (sourcenodes as)"
proof(cases as)
case Nil
with ‹n -as→* n'› show ?thesis by(fastforce simp:intra_path_def)
next
case (Cons a' as')
with ‹n -as→* n'› Cons have "n = sourcenode a'" and "valid_edge a'"
and "targetnode a' -as'→* n'"
by(auto intro:path_split_Cons)
show ?thesis
proof(cases "kind a'" rule:edge_kind_cases)
case Intra
with Cons ‹same_level_path_aux [] as› have "same_level_path_aux [] as'"
by(fastforce simp:intra_kind_def)
moreover
from Intra Cons ‹upd_cs [] as = []› have "upd_cs [] as' = []"
by(fastforce simp:intra_kind_def)
ultimately obtain as'' where "targetnode a' -as''→⇩ι* n'"
and "set (sourcenodes as'') ⊆ set (sourcenodes as')"
using IH Cons ‹targetnode a' -as'→* n'›
by(erule_tac x="as'" in allE) auto
from ‹n = sourcenode a'› ‹valid_edge a'› Intra ‹targetnode a' -as''→⇩ι* n'›
have "n -a'#as''→⇩ι* n'" by(fastforce intro:Cons_path simp:intra_path_def)
with ‹set (sourcenodes as'') ⊆ set (sourcenodes as')› Cons show ?thesis
by(rule_tac x="a'#as''" in exI,auto simp:sourcenodes_def)
next
case (Call Q p f)
with Cons ‹same_level_path_aux [] as›
have "same_level_path_aux [a'] as'" by simp
from Call Cons ‹upd_cs [] as = []› have "upd_cs [a'] as' = []" by simp
hence "as' ≠ []" by fastforce
with ‹upd_cs [a'] as' = []› obtain xs ys where "as' = xs@ys" and "xs ≠ []"
and "upd_cs [a'] xs = []" and "upd_cs [] ys = []"
and "∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs [a'] xs' ≠ []"
by -(erule upd_cs_empty_split,auto)
from ‹same_level_path_aux [a'] as'› ‹as' = xs@ys› ‹upd_cs [a'] xs = []›
have "same_level_path_aux [a'] xs" and "same_level_path_aux [] ys"
by(auto intro:slpa_split)
from ‹same_level_path_aux [a'] xs› ‹upd_cs [a'] xs = []›
‹∀xs' ys'. xs = xs'@ys' ∧ ys' ≠ [] ⟶ upd_cs [a'] xs' ≠ []›
have "last xs ∈ get_return_edges (last [a'])"
by(fastforce intro!:slpa_get_return_edges)
with ‹valid_edge a'› Call
obtain a where "valid_edge a" and "sourcenode a = sourcenode a'"
and "targetnode a = targetnode (last xs)" and "kind a = (λcf. False)⇩√"
by -(drule call_return_node_edge,auto)
from ‹targetnode a = targetnode (last xs)› ‹xs ≠ []›
have "targetnode a = targetnode (last (a'#xs))" by simp
from ‹as' = xs@ys› ‹xs ≠ []› Cons have "length ys < length as" by simp
from ‹targetnode a' -as'→* n'› ‹as' = xs@ys› ‹xs ≠ []›
have "targetnode (last (a'#xs)) -ys→* n'"
by(cases xs rule:rev_cases,auto dest:path_split)
with IH ‹length ys < length as› ‹same_level_path_aux [] ys›
‹upd_cs [] ys = []›
obtain as'' where "targetnode (last (a'#xs)) -as''→⇩ι* n'"
and "set(sourcenodes as'') ⊆ set(sourcenodes ys)"
apply(erule_tac x="ys" in allE) apply clarsimp
apply(erule_tac x="targetnode (last (a'#xs))" in allE)
by clarsimp
from ‹sourcenode a = sourcenode a'› ‹n = sourcenode a'›
‹targetnode a = targetnode (last (a'#xs))› ‹valid_edge a›
‹kind a = (λcf. False)⇩√› ‹targetnode (last (a'#xs)) -as''→⇩ι* n'›
have "n -a#as''→⇩ι* n'"
by(fastforce intro:Cons_path simp:intra_path_def intra_kind_def)
moreover
from ‹set(sourcenodes as'') ⊆ set(sourcenodes ys)› Cons ‹as' = xs@ys›
‹sourcenode a = sourcenode a'›
have "set(sourcenodes (a#as'')) ⊆ set(sourcenodes as)"
by(auto simp:sourcenodes_def)
ultimately show ?thesis by blast
next
case (Return Q p f)
with Cons ‹same_level_path_aux [] as› have False by simp
thus ?thesis by simp
qed
qed
qed
qed
lemma slp_callstack_length_equal:
assumes "n -as→⇘sl⇙* n'" obtains cf' where "transfers (kinds as) (cf#cfs) = cf'#cfs"
and "transfers (kinds as) (cf#cfs') = cf'#cfs'"
proof(atomize_elim)
from ‹n -as→⇘sl⇙* n'› have "same_level_path_aux [] as" and "upd_cs [] as = []"
by(simp_all add:slp_def same_level_path_def)
then obtain cfx cfsx where "transfers (kinds as) (cf#cfs) = cfsx@cfx#cfs"
and "transfers (kinds as) (cf#cfs') = cfsx@cfx#cfs'"
and "length cfsx = length (upd_cs [] as)"
by(fastforce elim:slpa_callstack_length)
with ‹upd_cs [] as = []› have "cfsx = []" by(cases cfsx) auto
with ‹transfers (kinds as) (cf#cfs) = cfsx@cfx#cfs›
‹transfers (kinds as) (cf#cfs') = cfsx@cfx#cfs'›
show "∃cf'. transfers (kinds as) (cf#cfs) = cf'#cfs ∧
transfers (kinds as) (cf#cfs') = cf'#cfs'" by fastforce
qed
lemma slp_cases [consumes 1,case_names intra_path return_intra_path]:
assumes "m -as→⇘sl⇙* m'"
obtains "m -as→⇩ι* m'"
| as' a as'' Q p f where "as = as'@a#as''" and "kind a = Q↩⇘p⇙f"
and "m -as'@[a]→⇘sl⇙* targetnode a" and "targetnode a -as''→⇩ι* m'"
proof(atomize_elim)
from ‹m -as→⇘sl⇙* m'› have "m -as→* m'" and "same_level_path_aux [] as"
and "upd_cs [] as = []" by(simp_all add:slp_def same_level_path_def)
from ‹m -as→* m'› have "∀a ∈ set as. valid_edge a" by(rule path_valid_edges)
have "∀a ∈ set []. valid_edge a" by simp
with ‹same_level_path_aux [] as› ‹upd_cs [] as = []› ‹∀a ∈ set []. valid_edge a›
‹∀a ∈ set as. valid_edge a›
show "m -as→⇩ι* m' ∨
(∃as' a as'' Q p f. as = as' @ a # as'' ∧ kind a = Q↩⇘p⇙f ∧
m -as' @ [a]→⇘sl⇙* targetnode a ∧ targetnode a -as''→⇩ι* m')"
proof(cases rule:slpa_cases)
case intra_path
with ‹m -as→* m'› have "m -as→⇩ι* m'" by(simp add:intra_path_def)
thus ?thesis by blast
next
case (return_intra_path as' a as'' Q p f c' cs')
from ‹m -as→* m'› ‹as = as' @ a # as''›
have "m -as'→* sourcenode a" and "valid_edge a" and "targetnode a -as''→* m'"
by(auto intro:path_split)
from ‹m -as'→* sourcenode a› ‹valid_edge a›
have "m -as'@[a]→* targetnode a" by(fastforce intro:path_Append path_edge)
with ‹same_level_path_aux [] as'› ‹upd_cs [] as' = c' # cs'› ‹kind a = Q↩⇘p⇙f›
‹a ∈ get_return_edges c'›
have "same_level_path_aux [] (as'@[a])"
by(fastforce intro:same_level_path_aux_Append)
with ‹upd_cs [] (as' @ [a]) = []› ‹m -as'@[a]→* targetnode a›
have "m -as'@[a]→⇘sl⇙* targetnode a" by(simp add:slp_def same_level_path_def)
moreover
from ‹∀a∈set as''. intra_kind (kind a)› ‹targetnode a -as''→* m'›
have "targetnode a -as''→⇩ι* m'" by(simp add:intra_path_def)
ultimately show ?thesis using ‹as = as' @ a # as''› ‹kind a = Q↩⇘p⇙f› by blast
qed
qed
function same_level_path_rev_aux :: "'edge list ⇒ 'edge list ⇒ bool"
where "same_level_path_rev_aux cs [] ⟷ True"
| "same_level_path_rev_aux cs (as@[a]) ⟷
(case (kind a) of Q↩⇘p⇙f ⇒ same_level_path_rev_aux (a#cs) as
| Q:r↪⇘p⇙fs ⇒ case cs of [] ⇒ False
| c'#cs' ⇒ c' ∈ get_return_edges a ∧
same_level_path_rev_aux cs' as
| _ ⇒ same_level_path_rev_aux cs as)"
by auto(case_tac b rule:rev_cases,auto)
termination by lexicographic_order
lemma slpra_induct [consumes 1,case_names slpra_empty slpra_intra slpra_Return
slpra_Call]:
assumes major: "same_level_path_rev_aux xs ys"
and rules: "⋀cs. P cs []"
"⋀cs a as. ⟦intra_kind(kind a); same_level_path_rev_aux cs as; P cs as⟧
⟹ P cs (as@[a])"
"⋀cs a as Q p f. ⟦kind a = Q↩⇘p⇙f; same_level_path_rev_aux (a#cs) as; P (a#cs) as⟧
⟹ P cs (as@[a])"
"⋀cs a as Q r p fs c' cs'. ⟦kind a = Q:r↪⇘p⇙fs; cs = c'#cs';
same_level_path_rev_aux cs' as; c' ∈ get_return_edges a; P cs' as⟧
⟹ P cs (as@[a])"
shows "P xs ys"
using major
apply(induct ys arbitrary: xs rule:rev_induct)
by(auto intro:rules split:edge_kind.split_asm list.split_asm simp:intra_kind_def)
lemma same_level_path_rev_aux_Append:
"⟦same_level_path_rev_aux cs as'; same_level_path_rev_aux (upd_rev_cs cs as') as⟧
⟹ same_level_path_rev_aux cs (as@as')"
by(induct rule:slpra_induct,
auto simp:intra_kind_def simp del:append_assoc simp:append_assoc[THEN sym])
lemma slpra_to_slpa:
"⟦same_level_path_rev_aux cs as; upd_rev_cs cs as = []; n -as→* n';
valid_return_list cs n'⟧
⟹ same_level_path_aux [] as ∧ same_level_path_aux (upd_cs [] as) cs ∧
upd_cs (upd_cs [] as) cs = []"
proof(induct arbitrary:n' rule:slpra_induct)
case slpra_empty thus ?case by simp
next
case (slpra_intra cs a as)
note IH = ‹⋀n'. ⟦upd_rev_cs cs as = []; n -as→* n'; valid_return_list cs n'⟧
⟹ same_level_path_aux [] as ∧ same_level_path_aux (upd_cs [] as) cs ∧
upd_cs (upd_cs [] as) cs = []›
from ‹n -as@[a]→* n'› have "n -as→* sourcenode a" and "valid_edge a"
and "n' = targetnode a" by(auto intro:path_split_snoc)
from ‹valid_edge a› ‹intra_kind (kind a)›
have "get_proc (sourcenode a) = get_proc (targetnode a)"
by(rule get_proc_intra)
with ‹valid_return_list cs n'› ‹n' = targetnode a›
have "valid_return_list cs (sourcenode a)"
apply(clarsimp simp:valid_return_list_def)
apply(erule_tac x="cs'" in allE) apply clarsimp
by(case_tac cs')(auto simp:targetnodes_def)
from ‹upd_rev_cs cs (as@[a]) = []› ‹intra_kind (kind a)›
have "upd_rev_cs cs as = []" by(fastforce simp:intra_kind_def)
from ‹valid_edge a› ‹intra_kind (kind a)›
have "get_proc (sourcenode a) = get_proc (targetnode a)" by(rule get_proc_intra)
from IH[OF ‹upd_rev_cs cs as = []› ‹n -as→* sourcenode a›
‹valid_return_list cs (sourcenode a)›]
have "same_level_path_aux [] as"
and "same_level_path_aux (upd_cs [] as) cs"
and "upd_cs (upd_cs [] as) cs = []" by simp_all
from ‹same_level_path_aux [] as› ‹intra_kind (kind a)›
have "same_level_path_aux [] (as@[a])" by(rule slpa_snoc_intra)
from ‹intra_kind (kind a)›
have "upd_cs [] (as@[a]) = upd_cs [] as"
by(fastforce simp:upd_cs_Append intra_kind_def)
moreover
from ‹same_level_path_aux [] as› ‹intra_kind (kind a)›
have "same_level_path_aux [] (as@[a])" by(rule slpa_snoc_intra)
ultimately show ?case using ‹same_level_path_aux (upd_cs [] as) cs›
‹upd_cs (upd_cs [] as) cs = []›
by simp
next
case (slpra_Return cs a as Q p f)
note IH = ‹⋀n' n''. ⟦upd_rev_cs (a#cs) as = []; n -as→* n';
valid_return_list (a#cs) n'⟧
⟹ same_level_path_aux [] as ∧
same_level_path_aux (upd_cs [] as) (a#cs) ∧
upd_cs (upd_cs [] as) (a#cs) = []›
from ‹n -as@[a]→* n'› have "n -as→* sourcenode a" and "valid_edge a"
and "n' = targetnode a" by(auto intro:path_split_snoc)
from ‹valid_edge a› ‹kind a = Q↩⇘p⇙f› have "p = get_proc (sourcenode a)"
by(rule get_proc_return[THEN sym])
from ‹valid_return_list cs n'› ‹n' = targetnode a›
have "valid_return_list cs (targetnode a)" by simp
with ‹valid_edge a› ‹kind a = Q↩⇘p⇙f› ‹p = get_proc (sourcenode a)›
have "valid_return_list (a#cs) (sourcenode a)"
apply(clarsimp simp:valid_return_list_def)
apply(case_tac cs') apply auto
apply(erule_tac x="list" in allE) apply clarsimp
by(case_tac list,auto simp:targetnodes_def)
from ‹upd_rev_cs cs (as@[a]) = []› ‹kind a = Q↩⇘p⇙f›
have "upd_rev_cs (a#cs) as = []" by simp
from IH[OF this ‹n -as→* sourcenode a› ‹valid_return_list (a#cs) (sourcenode a)›]
have "same_level_path_aux [] as"
and "same_level_path_aux (upd_cs [] as) (a#cs)"
and "upd_cs (upd_cs [] as) (a#cs) = []" by simp_all
show ?case
proof(cases "upd_cs [] as")
case Nil
with ‹kind a = Q↩⇘p⇙f› ‹same_level_path_aux (upd_cs [] as) (a#cs)›
have False by simp
thus ?thesis by simp
next
case (Cons cx csx)
with ‹kind a = Q↩⇘p⇙f› ‹same_level_path_aux (upd_cs [] as) (a#cs)›
obtain Qx fx
where match:"a ∈ get_return_edges cx" "same_level_path_aux csx cs" by auto
from ‹kind a = Q↩⇘p⇙f› Cons have "upd_cs [] (as@[a]) = csx"
by(rule upd_cs_snoc_Return_Cons)
with ‹same_level_path_aux (upd_cs [] as) (a#cs)›
‹kind a = Q↩⇘p⇙f› match
have "same_level_path_aux (upd_cs [] (as@[a])) cs" by simp
from ‹upd_cs [] (as@[a]) = csx› ‹kind a = Q↩⇘p⇙f› Cons
‹upd_cs (upd_cs [] as) (a#cs) = []›
have "upd_cs (upd_cs [] (as@[a])) cs = []" by simp
from Cons ‹kind a = Q↩⇘p⇙f› match
have "same_level_path_aux (upd_cs [] as) [a]" by simp
with ‹same_level_path_aux [] as› have "same_level_path_aux [] (as@[a])"
by(rule same_level_path_aux_Append)
with ‹same_level_path_aux (upd_cs [] (as@[a])) cs›
‹upd_cs (upd_cs [] (as@[a])) cs = []›
show ?thesis by simp
qed
next
case (slpra_Call cs a as Q r p fs cx csx)
note IH = ‹⋀n'. ⟦upd_rev_cs csx as = []; n -as→* n'; valid_return_list csx n'⟧
⟹ same_level_path_aux [] as ∧
same_level_path_aux (upd_cs [] as) csx ∧ upd_cs (upd_cs [] as) csx = []›
note match = ‹cs = cx#csx› ‹cx ∈ get_return_edges a›
from ‹n -as@[a]→* n'› have "n -as→* sourcenode a" and "valid_edge a"
and "n' = targetnode a" by(auto intro:path_split_snoc)
from ‹valid_edge a› match
have "get_proc (sourcenode a) = get_proc (targetnode cx)"
by(fastforce intro:get_proc_get_return_edge)
with ‹valid_return_list cs n'› ‹cs = cx#csx›
have "valid_return_list csx (sourcenode a)"
apply(clarsimp simp:valid_return_list_def)
apply(erule_tac x="cx#cs'" in allE) apply clarsimp
by(case_tac cs',auto simp:targetnodes_def)
from ‹kind a = Q:r↪⇘p⇙fs› match ‹upd_rev_cs cs (as@[a]) = []›
have "upd_rev_cs csx as = []" by simp
from IH[OF this ‹n -as→* sourcenode a› ‹valid_return_list csx (sourcenode a)›]
have "same_level_path_aux [] as"
and "same_level_path_aux (upd_cs [] as) csx" and "upd_cs (upd_cs [] as) csx = []"
by simp_all
from ‹same_level_path_aux [] as› ‹kind a = Q:r↪⇘p⇙fs›
have "same_level_path_aux [] (as@[a])" by(rule slpa_snoc_Call)
from ‹valid_edge a› ‹kind a = Q:r↪⇘p⇙fs› match obtain Q' f' where "kind cx = Q'↩⇘p⇙f'"
by(fastforce dest!:call_return_edges)
from ‹kind a = Q:r↪⇘p⇙fs› have "upd_cs [] (as@[a]) = a#(upd_cs [] as)"
by(rule upd_cs_snoc_Call)
with ‹same_level_path_aux (upd_cs [] as) csx› ‹kind a = Q:r↪⇘p⇙fs›
‹kind cx = Q'↩⇘p⇙f'› match
have "same_level_path_aux (upd_cs [] (as@[a])) cs" by simp
from ‹upd_cs (upd_cs [] as) csx = []› ‹upd_cs [] (as@[a]) = a#(upd_cs [] as)›
‹kind a = Q:r↪⇘p⇙fs› ‹kind cx = Q'↩⇘p⇙f'› match
have "upd_cs (upd_cs [] (as@[a])) cs = []" by simp
with ‹same_level_path_aux [] (as@[a])›
‹same_level_path_aux (upd_cs [] (as@[a])) cs› show ?case by simp
qed
subsubsection ‹Lemmas on paths with ‹(_Entry_)››
lemma path_Entry_target [dest]:
assumes "n -as→* (_Entry_)"
shows "n = (_Entry_)" and "as = []"
using ‹n -as→* (_Entry_)›
proof(induct n as n'≡"(_Entry_)" rule:path.induct)
case (Cons_path n'' as a n)
from ‹n'' = (_Entry_)› ‹targetnode a = n''› ‹valid_edge a› have False
by -(rule Entry_target,simp_all)
{ case 1
from ‹False› show ?case ..
next
case 2
from ‹False› show ?case ..
}
qed simp_all
lemma Entry_sourcenode_hd:
assumes "n -as→* n'" and "(_Entry_) ∈ set (sourcenodes as)"
shows "n = (_Entry_)" and "(_Entry_) ∉ set (sourcenodes (tl as))"
using ‹n -as→* n'› ‹(_Entry_) ∈ set (sourcenodes as)›
proof(induct rule:path.induct)
case (empty_path n) case 1
thus ?case by(simp add:sourcenodes_def)
next
case (empty_path n) case 2
thus ?case by(simp add:sourcenodes_def)
next
case (Cons_path n'' as n' a n)
note IH1 = ‹(_Entry_) ∈ set(sourcenodes as) ⟹ n'' = (_Entry_)›
note IH2 = ‹(_Entry_) ∈ set(sourcenodes as) ⟹ (_Entry_) ∉ set(sourcenodes(tl as))›
have "(_Entry_) ∉ set (sourcenodes(tl(a#as)))"
proof(rule ccontr)
assume "¬ (_Entry_) ∉ set (sourcenodes (tl (a#as)))"
hence "(_Entry_) ∈ set (sourcenodes as)" by simp
from IH1[OF this] have "n'' = (_Entry_)" by simp
with ‹targetnode a = n''› ‹valid_edge a› show False by -(erule Entry_target,simp)
qed
hence "(_Entry_) ∉ set (sourcenodes(tl(a#as)))" by fastforce
{ case 1
with ‹(_Entry_) ∉ set (sourcenodes(tl(a#as)))› ‹sourcenode a = n›
show ?case by(simp add:sourcenodes_def)
next
case 2
with ‹(_Entry_) ∉ set (sourcenodes(tl(a#as)))› ‹sourcenode a = n›
show ?case by(simp add:sourcenodes_def)
}
qed
lemma Entry_no_inner_return_path:
assumes "(_Entry_) -as@[a]→* n" and "∀a ∈ set as. intra_kind(kind a)"
and "kind a = Q↩⇘p⇙f"
shows "False"
proof -
from ‹(_Entry_) -as@[a]→* n› have "(_Entry_) -as→* sourcenode a"
and "valid_edge a" and "targetnode a = n" by(auto intro:path_split_snoc)
from ‹(_Entry_) -as→* sourcenode a› ‹∀a ∈ set as. intra_kind(kind a)›
have "(_Entry_) -as→⇩ι* sourcenode a" by(simp add:intra_path_def)
hence "get_proc (sourcenode a) = Main"
by(fastforce dest:intra_path_get_procs simp:get_proc_Entry)
with ‹valid_edge a› ‹kind a = Q↩⇘p⇙f› have "p = Main"
by(fastforce dest:get_proc_return)
with ‹valid_edge a› ‹kind a = Q↩⇘p⇙f› show ?thesis
by(fastforce intro:Main_no_return_source)
qed
lemma vpra_no_slpra:
"⟦valid_path_rev_aux cs as; n -as→* n'; valid_return_list cs n'; cs ≠ [];
∀xs ys. as = xs@ys ⟶ (¬ same_level_path_rev_aux cs ys ∨ upd_rev_cs cs ys ≠ [])⟧
⟹ ∃a Q f. valid_edge a ∧ kind a = Q↩⇘get_proc n⇙f"
proof(induct arbitrary:n' rule:vpra_induct)
case (vpra_empty cs)
from ‹valid_return_list cs n'› ‹cs ≠ []› obtain Q f where "valid_edge (hd cs)"
and "kind (hd cs) = Q↩⇘get_proc n'⇙f"
apply(unfold valid_return_list_def)
apply(drule hd_Cons_tl[THEN sym])
apply(erule_tac x="[]" in allE)
apply(erule_tac x="hd cs" in allE)
by auto
from ‹n -[]→* n'› have "n = n'" by fastforce
with ‹valid_edge (hd cs)› ‹kind (hd cs) = Q↩⇘get_proc n'⇙f› show ?case by blast
next
case (vpra_intra cs a as)
note IH = ‹⋀n'. ⟦n -as→* n'; valid_return_list cs n'; cs ≠ [];
∀xs ys. as = xs@ys ⟶ ¬ same_level_path_rev_aux cs ys ∨ upd_rev_cs cs ys ≠ []⟧
⟹ ∃a Q f. valid_edge a ∧ kind a = Q↩⇘get_proc n⇙f›
note all = ‹∀xs ys. as@[a] = xs@ys
⟶ ¬ same_level_path_rev_aux cs ys ∨ upd_rev_cs cs ys ≠ []›
from ‹n -as@[a]→* n'› have "n -as→* sourcenode a" and "valid_edge a"
and "targetnode a = n'" by(auto intro:path_split_snoc)
from ‹valid_return_list cs n'› ‹cs ≠ []› obtain Q f where "valid_edge (hd cs)"
and "kind (hd cs) = Q↩⇘get_proc n'⇙f"
apply(unfold valid_return_list_def)
apply(drule hd_Cons_tl[THEN sym])
apply(erule_tac x="[]" in allE)
apply(erule_tac x="hd cs" in allE)
by auto
from ‹valid_edge a› ‹intra_kind (kind a)›
have "get_proc (sourcenode a) = get_proc (targetnode a)" by(rule get_proc_intra)
with ‹kind (hd cs) = Q↩⇘get_proc n'⇙f› ‹targetnode a = n'›
have "kind (hd cs) = Q↩⇘get_proc (sourcenode a)⇙f" by simp
from ‹valid_return_list cs n'› ‹targetnode a = n'›
‹get_proc (sourcenode a) = get_proc (targetnode a)›
have "valid_return_list cs (sourcenode a)"
apply(clarsimp simp:valid_return_list_def)
apply(erule_tac x="cs'" in allE)
apply(erule_tac x="c" in allE)
by(auto split:list.split)
from all ‹intra_kind (kind a)›
have "∀xs ys. as = xs@ys
⟶ ¬ same_level_path_rev_aux cs ys ∨ upd_rev_cs cs ys ≠ []"
apply clarsimp apply(erule_tac x="xs" in allE)
by(auto simp:intra_kind_def)
from IH[OF ‹n -as→* sourcenode a› ‹valid_return_list cs (sourcenode a)›
‹cs ≠ []› this] show ?case .
next
case (vpra_Return cs a as Q p f)
note IH = ‹⋀n'. ⟦n -as→* n'; valid_return_list (a#cs) n'; a#cs ≠ [];
∀xs ys. as = xs @ ys ⟶
¬ same_level_path_rev_aux (a#cs) ys ∨ upd_rev_cs (a#cs) ys ≠ []⟧
⟹ ∃a Q f. valid_edge a ∧ kind a = Q↩⇘get_proc n⇙f›
from ‹n -as@[a]→* n'› have "n -as→* sourcenode a" and "valid_edge a"
and "targetnode a = n'" by(auto intro:path_split_snoc)
from ‹valid_edge a› ‹kind a = Q↩⇘p⇙f› have "get_proc (sourcenode a) = p"
by(rule get_proc_return)
with ‹kind a = Q↩⇘p⇙f› ‹valid_return_list cs n'› ‹valid_edge a› ‹targetnode a = n'›
have "valid_return_list (a#cs) (sourcenode a)"
apply(clarsimp simp:valid_return_list_def)
apply(case_tac cs') apply auto
apply(erule_tac x="list" in allE)
apply(erule_tac x="c" in allE)
by(auto split:list.split simp:targetnodes_def)
from ‹∀xs ys. as@[a] = xs@ys ⟶
¬ same_level_path_rev_aux cs ys ∨ upd_rev_cs cs ys ≠ []› ‹kind a = Q↩⇘p⇙f›
have "∀xs ys. as = xs@ys ⟶
¬ same_level_path_rev_aux (a#cs) ys ∨ upd_rev_cs (a#cs) ys ≠ []"
apply clarsimp apply(erule_tac x="xs" in allE)
by auto
from IH[OF ‹n -as→* sourcenode a› ‹valid_return_list (a#cs) (sourcenode a)›
_ this] show ?case by simp
next
case (vpra_CallEmpty cs a as Q p fs)
from ‹cs = []› ‹cs ≠ []› have False by simp
thus ?case by simp
next
case (vpra_CallCons cs a as Q r p fs c' cs')
note IH = ‹⋀n'. ⟦n -as→* n'; valid_return_list cs' n'; cs' ≠ [];
∀xs ys. as = xs@ys ⟶
¬ same_level_path_rev_aux cs' ys ∨ upd_rev_cs cs' ys ≠ []⟧
⟹ ∃a Q f. valid_edge a ∧ kind a = Q↩⇘get_proc n⇙f›
note all = ‹∀xs ys. as@[a] = xs@ys ⟶
¬ same_level_path_rev_aux cs ys ∨ upd_rev_cs cs ys ≠ []›
from ‹n -as@[a]→* n'› have "n -as→* sourcenode a" and "valid_edge a"
and "targetnode a = n'" by(auto intro:path_split_snoc)
from ‹valid_return_list cs n'› ‹cs = c'#cs'› have "valid_edge c'"
apply(clarsimp simp:valid_return_list_def)
apply(erule_tac x="[]" in allE)
by auto
show ?case
proof(cases "cs' = []")
case True
with ‹cs = c'#cs'› ‹kind a = Q:r↪⇘p⇙fs› ‹c' ∈ get_return_edges a›
have "same_level_path_rev_aux cs ([]@[a])"
and "upd_rev_cs cs ([]@[a]) = []"
by(simp only:same_level_path_rev_aux.simps upd_rev_cs.simps,clarsimp)+
with all have False by(erule_tac x="as" in allE) fastforce
thus ?thesis by simp
next
case False
with ‹valid_return_list cs n'› ‹cs = c'#cs'›
have "valid_return_list cs' (targetnode c')"
apply(clarsimp simp:valid_return_list_def)
apply(hypsubst_thin)
apply(erule_tac x="c'#cs'" in allE)
apply(auto simp:targetnodes_def)
apply(case_tac cs') apply auto
apply(case_tac list) apply(auto simp:targetnodes_def)
done
from ‹valid_edge a› ‹c' ∈ get_return_edges a›
have "get_proc (sourcenode a) = get_proc (targetnode c')"
by(rule get_proc_get_return_edge)
with ‹valid_return_list cs' (targetnode c')›
have "valid_return_list cs' (sourcenode a)"
apply(clarsimp simp:valid_return_list_def)
apply(hypsubst_thin)
apply(erule_tac x="cs'" in allE)
apply(erule_tac x="c" in allE)
by(auto split:list.split)
from all ‹kind a = Q:r↪⇘p⇙fs› ‹cs = c'#cs'› ‹c' ∈ get_return_edges a›
have "∀xs ys. as = xs@ys
⟶ ¬ same_level_path_rev_aux cs' ys ∨ upd_rev_cs cs' ys ≠ []"
apply clarsimp apply(erule_tac x="xs" in allE)
by auto
from IH[OF ‹n -as→* sourcenode a› ‹valid_return_list cs' (sourcenode a)›
False this] show ?thesis .
qed
qed
lemma valid_Entry_path_cases:
assumes "(_Entry_) -as→⇩√* n" and "as ≠ []"
shows "(∃a' as'. as = as'@[a'] ∧ intra_kind(kind a')) ∨
(∃a' as' Q r p fs. as = as'@[a'] ∧ kind a' = Q:r↪⇘p⇙fs) ∨
(∃as' as'' n'. as = as'@as'' ∧ as'' ≠ [] ∧ n' -as''→⇘sl⇙* n)"
proof -
from ‹as ≠ []› obtain a' as' where "as = as'@[a']" by(cases as rule:rev_cases) auto
thus ?thesis
proof(cases "kind a'" rule:edge_kind_cases)
case Intra with ‹as = as'@[a']› show ?thesis by simp
next
case Call with ‹as = as'@[a']› show ?thesis by simp
next
case (Return Q p f)
from ‹(_Entry_) -as→⇩√* n› have "(_Entry_) -as→* n" and "valid_path_rev_aux [] as"
by(auto intro:vp_to_vpra simp:vp_def valid_path_def)
from ‹(_Entry_) -as→* n› ‹as = as'@[a']›
have "(_Entry_) -as'→* sourcenode a'" and "valid_edge a'"
and "targetnode a' = n"
by(auto intro:path_split_snoc)
from ‹valid_path_rev_aux [] as› ‹as = as'@[a']› Return
have "valid_path_rev_aux [a'] as'" by simp
from ‹valid_edge a'› Return
have "valid_return_list [a'] (sourcenode a')"
apply(clarsimp simp:valid_return_list_def)
apply(case_tac cs')
by(auto intro:get_proc_return[THEN sym])
show ?thesis
proof(cases "∀xs ys. as' = xs@ys ⟶
(¬ same_level_path_rev_aux [a'] ys ∨ upd_rev_cs [a'] ys ≠ [])")
case True
with ‹valid_path_rev_aux [a'] as'› ‹(_Entry_) -as'→* sourcenode a'›
‹valid_return_list [a'] (sourcenode a')›
obtain ax Qx fx where "valid_edge ax" and "kind ax = Qx↩⇘get_proc (_Entry_)⇙fx"
by(fastforce dest!:vpra_no_slpra)
hence False by(fastforce intro:Main_no_return_source simp:get_proc_Entry)
thus ?thesis by simp
next
case False
then obtain xs ys where "as' = xs@ys" and "same_level_path_rev_aux [a'] ys"
and "upd_rev_cs [a'] ys = []" by auto
with Return have "same_level_path_rev_aux [] (ys@[a'])"
and "upd_rev_cs [] (ys@[a']) = []" by simp_all
from ‹upd_rev_cs [a'] ys = []› have "ys ≠ []" by auto
with ‹(_Entry_) -as'→* sourcenode a'› ‹as' = xs@ys›
have "hd(sourcenodes ys) -ys→* sourcenode a'"
by(cases ys)(auto dest:path_split_second simp:sourcenodes_def)
with ‹targetnode a' = n› ‹valid_edge a'›
have "hd(sourcenodes ys) -ys@[a']→* n"
by(fastforce intro:path_Append path_edge)
with ‹same_level_path_rev_aux [] (ys@[a'])› ‹upd_rev_cs [] (ys@[a']) = []›
have "same_level_path (ys@[a'])"
by(fastforce dest:slpra_to_slpa simp:same_level_path_def valid_return_list_def)
with ‹hd(sourcenodes ys) -ys@[a']→* n› have "hd(sourcenodes ys) -ys@[a']→⇘sl⇙* n"
by(simp add:slp_def)
with ‹as = as'@[a']› ‹as' = xs@ys› Return
have "∃as' as'' n'. as = as'@as'' ∧ as'' ≠ [] ∧ n' -as''→⇘sl⇙* n"
by(rule_tac x="xs" in exI) auto
thus ?thesis by simp
qed
qed
qed
lemma valid_Entry_path_ascending_path:
assumes "(_Entry_) -as→⇩√* n"
obtains as' where "(_Entry_) -as'→⇩√* n"
and "set(sourcenodes as') ⊆ set(sourcenodes as)"
and "∀a' ∈ set as'. intra_kind(kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)"
proof(atomize_elim)
from ‹(_Entry_) -as→⇩√* n›
show "∃as'. (_Entry_) -as'→⇩√* n ∧ set(sourcenodes as') ⊆ set(sourcenodes as)∧
(∀a' ∈ set as'. intra_kind(kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs))"
proof(induct as arbitrary:n rule:length_induct)
fix as n
assume IH:"∀as''. length as'' < length as ⟶
(∀n'. (_Entry_) -as''→⇩√* n' ⟶
(∃as'. (_Entry_) -as'→⇩√* n' ∧ set (sourcenodes as') ⊆ set (sourcenodes as'') ∧
(∀a'∈set as'. intra_kind (kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs))))"
and "(_Entry_) -as→⇩√* n"
show "∃as'. (_Entry_) -as'→⇩√* n ∧ set(sourcenodes as') ⊆ set(sourcenodes as)∧
(∀a' ∈ set as'. intra_kind(kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs))"
proof(cases "as = []")
case True
with ‹(_Entry_) -as→⇩√* n› show ?thesis by(fastforce simp:sourcenodes_def vp_def)
next
case False
with ‹(_Entry_) -as→⇩√* n›
have "((∃a' as'. as = as'@[a'] ∧ intra_kind(kind a')) ∨
(∃a' as' Q r p fs. as = as'@[a'] ∧ kind a' = Q:r↪⇘p⇙fs)) ∨
(∃as' as'' n'. as = as'@as'' ∧ as'' ≠ [] ∧ n' -as''→⇘sl⇙* n)"
by(fastforce dest!:valid_Entry_path_cases)
thus ?thesis apply -
proof(erule disjE)+
assume "∃a' as'. as = as'@[a'] ∧ intra_kind(kind a')"
then obtain a' as' where "as = as'@[a']" and "intra_kind(kind a')" by blast
from ‹(_Entry_) -as→⇩√* n› ‹as = as'@[a']›
have "(_Entry_) -as'→⇩√* sourcenode a'" and "valid_edge a'"
and "targetnode a' = n"
by(auto intro:vp_split_snoc)
from ‹valid_edge a'› ‹intra_kind(kind a')›
have "sourcenode a' -[a']→⇘sl⇙* targetnode a'"
by(fastforce intro:path_edge intras_same_level_path simp:slp_def)
from IH ‹(_Entry_) -as'→⇩√* sourcenode a'› ‹as = as'@[a']›
obtain xs where "(_Entry_) -xs→⇩√* sourcenode a'"
and "set (sourcenodes xs) ⊆ set (sourcenodes as')"
and "∀a'∈set xs. intra_kind (kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)"
apply(erule_tac x="as'" in allE) by auto
from ‹(_Entry_) -xs→⇩√* sourcenode a'› ‹sourcenode a' -[a']→⇘sl⇙* targetnode a'›
have "(_Entry_) -xs@[a']→⇩√* targetnode a'" by(rule vp_slp_Append)
with ‹targetnode a' = n› have "(_Entry_) -xs@[a']→⇩√* n" by simp
moreover
from ‹set (sourcenodes xs) ⊆ set (sourcenodes as')› ‹as = as'@[a']›
have "set (sourcenodes (xs@[a'])) ⊆ set (sourcenodes as)"
by(auto simp:sourcenodes_def)
moreover
from ‹∀a'∈set xs. intra_kind (kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)›
‹intra_kind(kind a')›
have "∀a'∈set (xs@[a']). intra_kind (kind a') ∨
(∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)"
by fastforce
ultimately show ?thesis by blast
next
assume "∃a' as' Q r p fs. as = as'@[a'] ∧ kind a' = Q:r↪⇘p⇙fs"
then obtain a' as' Q r p fs where "as = as'@[a']" and "kind a' = Q:r↪⇘p⇙fs"
by blast
from ‹(_Entry_) -as→⇩√* n› ‹as = as'@[a']›
have "(_Entry_) -as'→⇩√* sourcenode a'" and "valid_edge a'"
and "targetnode a' = n"
by(auto intro:vp_split_snoc)
from IH ‹(_Entry_) -as'→⇩√* sourcenode a'› ‹as = as'@[a']›
obtain xs where "(_Entry_) -xs→⇩√* sourcenode a'"
and "set (sourcenodes xs) ⊆ set (sourcenodes as')"
and "∀a'∈set xs. intra_kind (kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)"
apply(erule_tac x="as'" in allE) by auto
from ‹targetnode a' = n› ‹valid_edge a'› ‹kind a' = Q:r↪⇘p⇙fs›
‹(_Entry_) -xs→⇩√* sourcenode a'›
have "(_Entry_) -xs@[a']→⇩√* n"
by(fastforce intro:path_Append path_edge vpa_snoc_Call
simp:vp_def valid_path_def)
moreover
from ‹set (sourcenodes xs) ⊆ set (sourcenodes as')› ‹as = as'@[a']›
have "set (sourcenodes (xs@[a'])) ⊆ set (sourcenodes as)"
by(auto simp:sourcenodes_def)
moreover
from ‹∀a'∈set xs. intra_kind (kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)›
‹kind a' = Q:r↪⇘p⇙fs›
have "∀a'∈set (xs@[a']). intra_kind (kind a') ∨
(∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)"
by fastforce
ultimately show ?thesis by blast
next
assume "∃as' as'' n'. as = as'@as'' ∧ as'' ≠ [] ∧ n' -as''→⇘sl⇙* n"
then obtain as' as'' n' where "as = as'@as''" and "as'' ≠ []"
and "n' -as''→⇘sl⇙* n" by blast
from ‹(_Entry_) -as→⇩√* n› ‹as = as'@as''› ‹as'' ≠ []›
have "(_Entry_) -as'→⇩√* hd(sourcenodes as'')"
by(cases as'',auto intro:vp_split simp:sourcenodes_def)
from ‹n' -as''→⇘sl⇙* n› ‹as'' ≠ []› have "hd(sourcenodes as'') = n'"
by(fastforce intro:path_sourcenode simp:slp_def)
from ‹as = as'@as''› ‹as'' ≠ []› have "length as' < length as" by simp
with IH ‹(_Entry_) -as'→⇩√* hd(sourcenodes as'')›
‹hd(sourcenodes as'') = n'›
obtain xs where "(_Entry_) -xs→⇩√* n'"
and "set (sourcenodes xs) ⊆ set (sourcenodes as')"
and "∀a'∈set xs. intra_kind (kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)"
apply(erule_tac x="as'" in allE) by auto
from ‹n' -as''→⇘sl⇙* n› obtain ys where "n' -ys→⇩ι* n"
and "set(sourcenodes ys) ⊆ set(sourcenodes as'')"
by(erule same_level_path_inner_path)
from ‹(_Entry_) -xs→⇩√* n'› ‹n' -ys→⇩ι* n› have "(_Entry_) -xs@ys→⇩√* n"
by(fastforce intro:vp_slp_Append intra_path_slp)
moreover
from ‹set (sourcenodes xs) ⊆ set (sourcenodes as')›
‹set(sourcenodes ys) ⊆ set(sourcenodes as'')› ‹as = as'@as''›
have "set (sourcenodes (xs@ys)) ⊆ set(sourcenodes as)"
by(auto simp:sourcenodes_def)
moreover
from ‹∀a'∈set xs. intra_kind (kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)›
‹n' -ys→⇩ι* n›
have "∀a'∈set (xs@ys). intra_kind (kind a') ∨ (∃Q r p fs. kind a' = Q:r↪⇘p⇙fs)"
by(fastforce simp:intra_path_def)
ultimately show ?thesis by blast
qed
qed
qed
qed
end
end