Theory Presburger_Examples
section ‹Examples for Presburger Arithmetics›
theory Presburger_Examples
imports Formula_Derivatives.Presburger_Formula
begin
definition "phi = FAll () (FEx () (FEx () (FBase (Eq [3, 5, -1] 8 0))))"
definition "lemma (_ :: unit) = check_eqv 0 phi (FBool True)"
lemma "check_eqv 0 (FAll () (FEx () (FEx () (FBase (Eq [3, 5, -1] 7 0))))) (FBool False)"
by check_equiv
lemma "check_eqv 0 (FAll () (FEx () (FEx () (FBase (Eq [3, 5, -1] 8 0))))) (FBool True)"
by check_equiv
lemma "check_eqv 0 (FAll () (FEx () (FEx () (FBase (Eq [4, 5, -1] 8 0))))) (FBool False)"
by check_equiv
end