Theory Inference_Functor
theory Inference_Functor
imports
Abstract_Substitution.Natural_Functor
Saturation_Framework_Extensions.Clausal_Calculus
begin
lemma set_inference_not_empty [iff]: "set_inference ι ≠ {}"
by(cases ι) simp
lemma finite_set_inference [intro]: "finite (set_inference ι)"
by (metis inference.exhaust inference.set List.finite_set finite.simps finite_Un)
global_interpretation inference_functor: finite_natural_functor where
map = map_inference and to_set = set_inference
by
unfold_locales
(auto simp: inference.map_comp inference.map_ident inference.set_map intro: inference.map_cong)
global_interpretation inference_functor: natural_functor_conversion where
map = map_inference and to_set = set_inference and map_to = map_inference and
map_from = map_inference and map' = map_inference and to_set' = set_inference
by unfold_locales
(auto simp: inference.set_map inference.map_comp)
end