Theory PMLinHOL_deep_further_tests_1
section‹Test Examples: Formula classification›
subsection‹Tests with the deep embedding: axiom schemata›
theory PMLinHOL_deep_further_tests_1
imports PMLinHOL_deep_tests
begin
consts φ::PML ψ::PML
abbreviation(input) "F1 ≡ (◇⇧d(◇⇧dφ)) ⊃⇧d ◇⇧dφ"
abbreviation(input) "F2 ≡ (◇⇧d(□⇧dφ)) ⊃⇧d □⇧d(◇⇧dφ)"
abbreviation(input) "F3 ≡ (◇⇧d(□⇧dφ)) ⊃⇧d □⇧dφ"
abbreviation(input) "F4 ≡ (□⇧d(◇⇧d(□⇧d(◇⇧dφ)))) ⊃⇧d □⇧d(◇⇧dφ)"
abbreviation(input) "F5 ≡ (◇⇧d(φ ∧⇧d (◇⇧dψ))) ⊃⇧d ((◇⇧dφ) ∧⇧d (◇⇧dψ))"
abbreviation(input) "F6 ≡ ((□⇧d(φ ⊃⇧d ψ)) ∧⇧d (◇⇧d(□⇧d(¬⇧dψ)))) ⊃⇧d ¬⇧d(◇⇧dψ)"
abbreviation(input) "F7 ≡ (◇⇧dφ) ⊃⇧d (□⇧d(φ ∨⇧d ◇⇧dφ))"
abbreviation(input) "F8 ≡ (◇⇧d(□⇧dφ)) ⊃⇧d (φ ∨⇧d ◇⇧dφ)"
abbreviation(input) "F9 ≡ ((□⇧d(◇⇧dφ)) ∧⇧d (□⇧d(◇⇧d(¬⇧d φ)))) ⊃⇧d ◇⇧d(◇⇧dφ)"
abbreviation(input) "F10 ≡ ((□⇧d(φ ⊃⇧d □⇧dψ)) ∧⇧d (□⇧d(◇⇧d(¬⇧dψ)))) ⊃⇧d ¬⇧d(□⇧dψ)"
declare imp_cong[cong del]
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F1"
apply simp
by (smt (z3) PML.simps(22))
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F1"
apply simp
by (smt (z3) PML.simps(22))
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F1"
apply simp
by (smt (z3) PML.simps(22))
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F1"
apply simp
oops
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F1"
apply simp
oops
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F1"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F1"
apply simp
by (smt (z3) PML.simps(22))
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F1"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F2"
apply simp
oops
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F2"
apply simp
oops
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F2"
apply simp
by (smt (z3) PML.simps(22))
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F2"
apply simp
by (smt (z3) PML.simps(22))
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F2"
apply simp
oops
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F2"
apply simp
by (smt (z3) PML.simps(22))
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F2"
apply simp
oops
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F2"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F3"
apply simp
oops
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F3"
apply simp
oops
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F3"
apply simp
oops
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F3"
apply simp
oops
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F3"
apply simp
oops
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F3"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F3"
apply simp
oops
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F3"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F4"
apply simp
oops
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F4"
apply simp
oops
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F4"
apply simp
oops
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F4"
apply simp
oops
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F4"
apply simp
oops
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F4"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F4"
apply simp
oops
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F4"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F5"
apply simp
by (smt (z3) PML.simps(22))
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F5"
apply simp
by (smt (z3) PML.simps(22))
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F5"
apply simp
by (smt (z3) PML.simps(22))
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F5"
apply simp
oops
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F5"
apply simp
oops
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F5"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F5"
apply simp
by (smt (z3) PML.simps(22))
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F5"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F6"
apply simp
oops
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F6"
apply simp
oops
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F6"
apply simp
oops
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F6"
apply simp
oops
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F6"
apply simp
oops
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F6"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F6"
apply simp
oops
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F6"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F7"
apply simp
oops
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F7"
apply simp
oops
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F7"
apply simp
oops
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F7"
apply simp
oops
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F7"
apply simp
oops
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F7"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F7"
apply simp
oops
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F7"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F8"
apply simp
oops
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F8"
apply simp
oops
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F8"
apply simp
by (smt (z3) PML.simps(22))
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F8"
apply simp
by (smt (z3) PML.simps(22))
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F8"
apply simp
oops
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F8"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F8"
apply simp
oops
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F8"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F9"
apply simp
by (metis (mono_tags, lifting) PML.simps(22))
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F9"
apply simp
by (metis (mono_tags, lifting) PML.simps(22))
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F9"
apply simp
oops
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F9"
apply simp
by (metis (mono_tags, lifting) PML.simps(22))
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F9"
apply simp
by (metis (mono_tags, lifting) PML.simps(22))
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F9"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F9"
apply simp
oops
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F9"
apply simp
oops
end
experiment begin
lemma S5: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F10"
apply simp
by (metis (mono_tags, lifting) PML.simps(22))
lemma S4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F10"
apply simp
by (metis (mono_tags, lifting) PML.simps(22))
lemma KB4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F10"
apply simp
oops
lemma KTB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ∧ (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F10"
apply simp
by (smt (verit) PML.simps(22,24))
lemma KT: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d φ) ⟶ ⟨W,R,V⟩,w ⊨⇧d F10"
apply simp
by (smt (verit) PML.simps(22,24))
lemma KB: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d φ ⊃⇧d □⇧d(◇⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F10"
apply simp
oops
lemma K4: "∀w:W. (∀φ. ⟨W,R,V⟩,w ⊨⇧d (□⇧dφ) ⊃⇧d □⇧d(□⇧dφ)) ⟶ ⟨W,R,V⟩,w ⊨⇧d F10"
apply simp
oops
lemma K: "∀w:W. ⟨W,R,V⟩,w ⊨⇧d F10"
apply simp
oops
end
end