Theory Abstract_Soundness.Finite_Proof_Soundness
theory Finite_Proof_Soundness
imports Abstract_Completeness.Abstract_Completeness
begin
section ‹Abstract Soundness›
locale Soundness = RuleSystem_Defs eff rules for
eff :: "'rule ⇒ 'sequent ⇒ 'sequent fset ⇒ bool"
and rules :: "'rule stream" +
fixes "structure" :: "'structure set"
and sat :: "'structure ⇒ 'sequent ⇒ bool"
assumes local_soundness:
"⋀r s sl.
⟦r ∈ R; eff r s sl; ⋀s'. s' |∈| sl ⟹ ∀S ∈ structure. sat S s'⟧
⟹
∀S ∈ structure. sat S s"
begin
abbreviation "ssat s ≡ ∀S ∈ structure. sat S s"
lemma epath_shift:
assumes "epath (srs @- steps)"
shows "epath steps"
using assms by (induction srs arbitrary: steps) (auto elim: epath.cases)
theorem soundness:
assumes f: "tfinite t" and w: "wf t"
shows "ssat (fst (root t))"
using f w proof (induction t rule: tfinite.induct)
case (tfinite t)
show ?case
by (rule local_soundness[of "snd (root t)" _ "fimage (fst o root) (cont t)"], insert tfinite)
(fastforce elim!: wf.cases)+
qed
end
end