Theory Transition_Lexorder
subsection‹Transition Lexorder›
text‹This theory defines a lexicographical ordering on transitions such that we can convert from
the set representation of EFSMs to a sorted list that we can recurse over.›
theory Transition_Lexorder
imports "Transition"
GExp_Lexorder
"HOL-Library.Product_Lexorder"
begin
instantiation "transition_ext" :: (linorder) linorder begin
definition less_transition_ext :: "'a::linorder transition_scheme ⇒ 'a transition_scheme ⇒ bool" where
"less_transition_ext t1 t2 = ((Label t1, Arity t1, Guards t1, Outputs t1, Updates t1, more t1) < (Label t2, Arity t2, Guards t2, Outputs t2, Updates t2, more t2))"
definition less_eq_transition_ext :: "'a::linorder transition_scheme ⇒ 'a transition_scheme ⇒ bool" where
"less_eq_transition_ext t1 t2 = (t1 < t2 ∨ t1 = t2)"
instance
apply standard
unfolding less_eq_transition_ext_def less_transition_ext_def
apply auto[1]
apply simp
using less_trans apply blast
using less_imp_not_less apply blast
by (metis Pair_inject equality neqE)
end
end