Theory Drinks_Machine
chapter‹Examples›
text‹In this chapter, we provide some examples of EFSMs and proofs over them. We first present a
formalisation of a simple drinks machine. Next, we prove observational equivalence of an alternative
model. Finally, we prove some temporal properties of the first example.›
section‹Drinks Machine›
text‹This theory formalises a simple drinks machine. The \emph{select} operation takes one
argument - the desired beverage. The \emph{coin} operation also takes one parameter representing
the value of the coin. The \emph{vend} operation has two flavours - one which dispenses the drink if
the customer has inserted enough money, and one which dispenses nothing if the user has not inserted
sufficient funds.
We first define a datatype \emph{statemane} which corresponds to $S$ in the formal definition.
Note that, while statename has four elements, the drinks machine presented here only requires three
states. The fourth element is included here so that the \emph{statename} datatype may be used in
the next example.›
theory Drinks_Machine
imports "Extended_Finite_State_Machines.EFSM"
begin
text_raw‹\snip{selectdef}{1}{2}{%›
definition select :: "transition" where
"select ≡ ⦇
Label = STR ''select'',
Arity = 1,
Guards = [],
Outputs = [],
Updates = [
(1, V (I 0)),
(2, L (Num 0))
]
⦈"
text_raw‹}%endsnip›
text_raw‹\snip{coindef}{1}{2}{%›
definition coin :: "transition" where
"coin ≡ ⦇
Label = STR ''coin'',
Arity = 1,
Guards = [],
Outputs = [Plus (V (R 2)) (V (I 0))],
Updates = [
(1, V (R 1)),
(2, Plus (V (R 2)) (V (I 0)))
]
⦈"
text_raw‹}%endsnip›
text_raw‹\snip{venddef}{1}{2}{%›
definition vend:: "transition" where
"vend≡ ⦇
Label = STR ''vend'',
Arity = 0,
Guards = [(Ge (V (R 2)) (L (Num 100)))],
Outputs = [(V (R 1))],
Updates = [(1, V (R 1)), (2, V (R 2))]
⦈"
text_raw‹}%endsnip›
text_raw‹\snip{vendfaildef}{1}{2}{%›
definition vend_fail :: "transition" where
"vend_fail ≡ ⦇
Label = STR ''vend'',
Arity = 0,
Guards = [(Lt (V (R 2)) (L (Num 100)))],
Outputs = [],
Updates = [(1, V (R 1)), (2, V (R 2))]
⦈"
text_raw‹}%endsnip›
text_raw‹\snip{drinksdef}{1}{2}{%›
definition drinks :: "transition_matrix" where
"drinks ≡ {|
((0,1), select),
((1,1), coin),
((1,1), vend_fail),
((1,2), vend)
|}"
text_raw‹}%endsnip›
lemmas transitions = select_def coin_def vend_def vend_fail_def
lemma apply_updates_vend: "apply_updates (Updates vend) (join_ir [] r) r = r"
by (simp add: vend_def apply_updates_def)
lemma drinks_states: "S drinks = {|0, 1, 2|}"
apply (simp add: S_def drinks_def)
by auto
lemma possible_steps_0:
"length i = 1 ⟹
possible_steps drinks 0 r (STR ''select'') i = {|(1, select)|}"
apply (simp add: possible_steps_singleton drinks_def)
apply safe
by (simp_all add: transitions apply_guards_def)
lemma first_step_select:
"(s', t) |∈| possible_steps drinks 0 r aa b ⟹ s' = 1 ∧ t = select"
apply (simp add: possible_steps_def fimage_def ffilter_def Abs_fset_inverse Set.filter_def drinks_def)
apply safe
by (simp_all add: transitions)
lemma drinks_vend_insufficient:
"r $ 2 = Some (Num x1) ⟹
x1 < 100 ⟹
possible_steps drinks 1 r (STR ''vend'') [] = {|(1, vend_fail)|}"
apply (simp add: possible_steps_singleton drinks_def)
apply safe
by (simp_all add: transitions apply_guards_def value_gt_def join_ir_def connectives)
lemma drinks_vend_invalid:
"∄n. r $ 2 = Some (Num n) ⟹
possible_steps drinks 1 r (STR ''vend'') [] = {||}"
apply (simp add: possible_steps_empty drinks_def can_take_transition_def can_take_def transitions)
by (simp add: MaybeBoolInt_not_num_1 value_gt_def)
lemma possible_steps_1_coin:
"length i = 1 ⟹ possible_steps drinks 1 r (STR ''coin'') i = {|(1, coin)|}"
apply (simp add: possible_steps_singleton drinks_def)
apply safe
by (simp_all add: transitions)
lemma possible_steps_2_vend:
"∃n. r $ 2 = Some (Num n) ∧ n ≥ 100 ⟹
possible_steps drinks 1 r (STR ''vend'') [] = {|(2, vend)|}"
apply (simp add: possible_steps_singleton drinks_def)
apply safe
by (simp_all add: transitions apply_guards_def value_gt_def join_ir_def connectives)
lemma recognises_from_2:
"recognises_execution drinks 1 <1 $:= d, 2 $:= Some (Num 100)> [(STR ''vend'', [])]"
apply (rule recognises_execution.step)
apply (rule_tac x="(2, vend)" in fBexI)
apply simp
by (simp add: possible_steps_2_vend)
lemma recognises_from_1a:
"recognises_execution drinks 1 <1 $:= d, 2 $:= Some (Num 50)> [(STR ''coin'', [Num 50]), (STR ''vend'', [])]"
apply (rule recognises_execution.step)
apply (rule_tac x="(1, coin)" in fBexI)
apply (simp add: apply_updates_def coin_def finfun_update_twist value_plus_def recognises_from_2)
by (simp add: possible_steps_1_coin)
lemma recognises_from_1: "recognises_execution drinks 1 <2 $:= Some (Num 0), 1 $:= Some d>
[(STR ''coin'', [Num 50]), (STR ''coin'', [Num 50]), (STR ''vend'', [])]"
apply (rule recognises_execution.step)
apply (rule_tac x="(1, coin)" in fBexI)
apply (simp add: apply_updates_def coin_def value_plus_def finfun_update_twist recognises_from_1a)
by (simp add: possible_steps_1_coin)
lemma purchase_coke:
"observe_execution drinks 0 <> [(STR ''select'', [Str ''coke'']), (STR ''coin'', [Num 50]), (STR ''coin'', [Num 50]), (STR ''vend'', [])] =
[[], [Some (Num 50)], [Some (Num 100)], [Some (Str ''coke'')]]"
by (simp add: possible_steps_0 possible_steps_1_coin possible_steps_2_vend transitions
apply_outputs_def apply_updates_def value_plus_def)
lemma rejects_input:
"l ≠ STR ''coin'' ⟹
l ≠ STR ''vend'' ⟹
¬ recognises_execution drinks 1 d' [(l, i)]"
apply (rule no_possible_steps_rejects)
by (simp add: possible_steps_empty drinks_def can_take_transition_def can_take_def transitions)
lemma rejects_recognises_prefix: "l ≠ STR ''coin'' ⟹
l ≠ STR ''vend'' ⟹
¬ (recognises drinks [(STR ''select'', [Str ''coke'']), (l, i)])"
apply (rule trace_reject_later)
apply (simp add: possible_steps_0 select_def join_ir_def input2state_def)
using rejects_input by blast
lemma rejects_termination:
"observe_execution drinks 0 <> [(STR ''select'', [Str ''coke'']), (STR ''rejects'', [Num 50]), (STR ''coin'', [Num 50])] = [[]]"
apply (rule observe_execution_step)
apply (simp add: step_def possible_steps_0 select_def)
apply (rule observe_execution_no_possible_step)
by (simp add: possible_steps_empty drinks_def can_take_transition_def can_take_def transitions)
lemma r2_0_vend:
"can_take_transition vend i r ⟹
∃n. r $ 2 = Some (Num n) ∧ n ≥ 100"
apply (simp add: can_take_transition_def can_take_def vend_def apply_guards_def maybe_negate_true maybe_or_false connectives value_gt_def)
using MaybeBoolInt.elims by force
lemma drinks_vend_sufficient: "r $ 2 = Some (Num x1) ⟹
x1 ≥ 100 ⟹
possible_steps drinks 1 r (STR ''vend'') [] = {|(2, vend)|}"
using possible_steps_2_vend by blast
lemma drinks_end: "possible_steps drinks 2 r a b = {||}"
apply (simp add: possible_steps_def drinks_def transitions)
by force
lemma drinks_vend_r2_String:
"r $ 2 = Some (value.Str x2) ⟹
possible_steps drinks 1 r (STR ''vend'') [] = {||}"
apply (simp add: possible_steps_empty drinks_def can_take_transition_def can_take_def transitions)
by (simp add: value_gt_def)
lemma drinks_vend_r2_rejects:
"∄n. r $ 2 = Some (Num n) ⟹ step drinks 1 r (STR ''vend'') [] = None"
apply (rule no_possible_steps_1)
apply (simp add: possible_steps_empty drinks_def can_take_transition_def can_take_def transitions)
by (simp add: MaybeBoolInt_not_num_1 value_gt_def)
lemma drinks_0_rejects:
"¬ (fst a = STR ''select'' ∧ length (snd a) = 1) ⟹
(possible_steps drinks 0 r (fst a) (snd a)) = {||}"
apply (simp add: drinks_def possible_steps_def transitions)
by force
lemma drinks_vend_empty: "(possible_steps drinks 0 <> (STR ''vend'') []) = {||}"
using drinks_0_rejects
by auto
lemma drinks_1_rejects:
"fst a = STR ''coin'' ⟶ length (snd a) ≠ 1 ⟹
a ≠ (STR ''vend'', []) ⟹
possible_steps drinks 1 r (fst a) (snd a) = {||}"
apply (simp add: possible_steps_empty drinks_def can_take_transition_def can_take_def transitions)
by (metis prod.collapse)
lemma drinks_rejects_future: "¬ recognises_execution drinks 2 d ((l, i)#t)"
apply (rule no_possible_steps_rejects)
by (simp add: possible_steps_empty drinks_def)
lemma drinks_1_rejects_trace:
assumes not_vend: "e ≠ (STR ''vend'', [])"
and not_coin: "∄i. e = (STR ''coin'', [i])"
shows "¬ recognises_execution drinks 1 r (e # es)"
proof-
show ?thesis
apply (cases e, simp)
subgoal for a b
apply (rule no_possible_steps_rejects)
apply (simp add: possible_steps_empty drinks_def can_take_transition_def can_take_def transitions)
apply (case_tac b)
using not_vend apply simp
using not_coin by auto
done
qed
lemma rejects_state_step: "s > 1 ⟹ step drinks s r l i = None"
apply (rule no_possible_steps_1)
by (simp add: possible_steps_empty drinks_def)
lemma invalid_other_states:
"s > 1 ⟹ ¬ recognises_execution drinks s r ((aa, b) # t)"
apply (rule no_possible_steps_rejects)
by (simp add: possible_steps_empty drinks_def)
lemma vend_ge_100:
"possible_steps drinks 1 r l i = {|(2, vend)|} ⟹
¬? value_gt (Some (Num 100)) (r $ 2) = trilean.true"
apply (insert possible_steps_apply_guards[of drinks 1 r l i 2 vend])
by (simp add: possible_steps_def apply_guards_def vend_def)
lemma drinks_no_possible_steps_1:
assumes not_coin: "¬ (a = STR ''coin'' ∧ length b = 1)"
and not_vend: "¬ (a = STR ''vend'' ∧ b = [])"
shows "possible_steps drinks 1 r a b = {||}"
using drinks_1_rejects not_coin not_vend by auto
lemma possible_steps_0_not_select: "a ≠ STR ''select'' ⟹
possible_steps drinks 0 <> a b = {||}"
apply (simp add: possible_steps_def ffilter_def fset_both_sides Abs_fset_inverse Set.filter_def drinks_def)
apply safe
by (simp_all add: select_def)
lemma possible_steps_select_wrong_arity: "a = STR ''select'' ⟹
length b ≠ 1 ⟹
possible_steps drinks 0 <> a b = {||}"
apply (simp add: possible_steps_def ffilter_def fset_both_sides Abs_fset_inverse Set.filter_def drinks_def)
apply safe
by (simp_all add: select_def)
lemma possible_steps_0_invalid:
"¬ (l = STR ''select'' ∧ length i = 1) ⟹
possible_steps drinks 0 <> l i = {||}"
using possible_steps_0_not_select possible_steps_select_wrong_arity by fastforce
end