Theory Code_Target_Set
section‹Sets›
text‹While the default code generator setup for sets works fine, it does not make for particularly
readable code. The reason for this is that the default setup needs to work with potentially infinite
sets. All of the sets we need to use here are finite so we present an alternative setup for the
basic set operations which generates much cleaner code.›
theory Code_Target_Set
imports "HOL-Library.Code_Cardinality"
begin
code_datatype set
declare List.union_coset_filter [code del]
declare insert_code [code del]
declare remove_code [code del]
declare card_coset_error [code del]
declare coset_subseteq_set_code [code del]
declare eq_set_code(1) [code del]
declare eq_set_code(2) [code del]
declare eq_set_code(4) [code del]
declare List.subset_code [code del]
declare inter_coset_fold [code del]
declare Code_Cardinality.subset'_code [code del]
declare subset_eq [code]
lemma [code del]:
"x ∈ List.coset xs ⟷ ¬ List.member xs x"
by (simp add: member_def)
lemma sup_set_append[code]: "(set x) ∪ (set y) = set (x @ y)"
by simp
declare product_concat_map [code]
lemma [code]: "insert x (set s) = (if x ∈ set s then set s else set (x#s))"
apply (simp)
by auto
lemma [code]:
"Code_Cardinality.subset' (set l1) (set l2) = ((list_all (λx. List.member l2 x)) l1)"
by (meson in_set_member list.pred_set subset'_code(2))
end