Theory Tensor_Scalar_Mult
section ‹Tensor Scalar Multiplication›
theory Tensor_Scalar_Mult
imports Tensor_Plus Tensor_Subtensor
begin
definition vec_smult::"'a::ring ⇒ 'a list ⇒ 'a list" where
"vec_smult α β = map ((*) α) β"
lemma vec_smult0: "vec_smult 0 as = vec0 (length as)"
by (induction as; auto simp add:vec0_def vec_smult_def)
lemma vec_smult_distr_right:
shows "vec_smult (α + β) as = vec_plus (vec_smult α as) (vec_smult β as)"
unfolding vec_smult_def vec_plus_def
by (induction as; simp add: distrib_right)
lemma vec_smult_Cons:
shows "vec_smult α (a # as) = (α * a) # vec_smult α as" by (simp add: vec_smult_def)
lemma vec_plus_Cons:
shows "vec_plus (a # as) (b # bs) = (a+b) # vec_plus as bs" by (simp add: vec_plus_def)
lemma vec_smult_distr_left:
assumes "length as = length bs"
shows "vec_smult α (vec_plus as bs) = vec_plus (vec_smult α as) (vec_smult α bs)"
using assms proof (induction as arbitrary:bs)
case Nil
then show ?case unfolding vec_smult_def vec_plus_def by simp
next
case (Cons a as')
then obtain b bs' where "bs = b # bs'" by (metis Suc_length_conv)
then have 0:"vec_smult α (vec_plus (a # as') bs) = (α*(a+b)) # vec_smult α (vec_plus as' bs')"
unfolding vec_smult_def vec_plus_def using Cons.IH[of bs'] by simp
have "length bs' = length as'" using Cons.prems ‹bs = b # bs'› by auto
then show ?case unfolding 0 unfolding ‹bs = b # bs'› vec_smult_Cons vec_plus_Cons
by (simp add: Cons.IH distrib_left)
qed
lemma length_vec_smult: "length (vec_smult α v) = length v" unfolding vec_smult_def by simp
definition smult::"'a::ring ⇒ 'a tensor ⇒ 'a tensor" (infixl ‹⋅› 70) where
"smult α A = (tensor_from_vec (dims A) (vec_smult α (vec A)))"
lemma tensor_smult0: fixes A::"'a::ring tensor"
shows "0 ⋅ A = tensor0 (dims A)"
unfolding smult_def tensor0_def vec_smult_def using vec_smult0 length_vec
by (metis (no_types) vec_smult_def)
lemma dims_smult[simp]:"dims (α ⋅ A) = dims A"
and vec_smult[simp]: "vec (α ⋅ A) = map ((*) α) (vec A)"
unfolding smult_def vec_smult_def by (simp add: length_vec)+
lemma tensor_smult_distr_right: "(α + β) ⋅ A = α ⋅ A + β ⋅ A"
unfolding plus_def plus_base_def
by (auto; metis smult_def vec_smult_def vec_smult_distr_right)
lemma tensor_smult_distr_left: "dims A = dims B ⟹ α ⋅ (A + B) = α ⋅ A + α ⋅ B"
proof -
assume a1: "dims A = dims B"
then have f2: "length (vec_plus (vec A) (vec B)) = length (vec A)"
by (simp add: length_vec vec_plus_def)
have f3: "dims (tensor_from_vec (dims B) (vec_smult α (vec A))) = dims B"
using a1 by (simp add: length_vec vec_smult_def)
have f4: "vec (α ⋅ A) = vec_smult α (vec A)"
by (simp add: vec_smult_def)
have "length (vec_smult α (vec B)) = length (vec B)"
by (simp add: vec_smult_def)
then show ?thesis
unfolding plus_def plus_base_def using f4 f3 f2 a1
by (simp add: length_vec smult_def vec_smult_distr_left)
qed
lemma smult_fixed_length_sublist:
assumes "length xs = l * c" "i<c"
shows "fixed_length_sublist (vec_smult α xs) l i = vec_smult α (fixed_length_sublist xs l i)"
unfolding fixed_length_sublist_def vec_smult_def by (simp add: drop_map take_map)
lemma smult_subtensor:
assumes "dims A ≠ []" "i < hd (dims A)"
shows "α ⋅ subtensor A i = subtensor (α ⋅ A) i"
proof (rule tensor_eqI)
show "dims (α ⋅ subtensor A i) = dims (subtensor (α ⋅ A) i)"
using dims_smult dims_subtensor assms(1) assms(2) by simp
show "vec (α ⋅ subtensor A i) = vec (subtensor (α ⋅ A) i)"
unfolding vec_smult
unfolding vec_subtensor[OF ‹dims A ≠ []› ‹i < hd (dims A)›]
using vec_subtensor[of "α ⋅ A" i]
by (simp add: assms(1) assms(2) drop_map fixed_length_sublist_def take_map)
qed
lemma lookup_smult:
assumes "is ⊲ dims A"
shows "lookup (α ⋅ A) is = α * lookup A is"
using assms proof (induction A arbitrary:"is" rule:subtensor_induct)
case (order_0 A "is")
then have "length (vec A) = 1" by (simp add: length_vec)
then have "hd (vec_smult α (vec A)) = α * hd (vec A)" unfolding vec_smult_def by (metis list.map_sel(1) list.size(3) zero_neq_one)
moreover have "is = []" using order_0 by auto
ultimately show ?case unfolding smult_def by (auto simp add: ‹length (Tensor.vec A) = 1› lookup_def length_vec_smult order_0.hyps)
next
case (order_step A "is")
then obtain i is' where "is = i # is'" by blast
then have "lookup (α ⋅ subtensor A i) is' = α * lookup (subtensor A i) is'"
by (metis (no_types, lifting) dims_subtensor list.sel(1) list.sel(3) order_step.IH order_step.hyps order_step.prems valid_index_dimsE)
then show ?case using smult_subtensor ‹is = i # is'› dims_smult lookup_subtensor1
list.sel(1) order_step.hyps order_step.prems valid_index_dimsE
by metis
qed
lemma tensor_smult_assoc:
fixes A::"'a::ring tensor"
shows "α ⋅ (β ⋅ A) = (α * β) ⋅ A"
by (rule tensor_lookup_eqI, simp, metis lookup_smult dims_smult mult.assoc)
end