Theory Digit_Function
subsection ‹Digit function is Diophantine›
theory Digit_Function
imports Exponential_Relation "Digit_Expansions.Bits_Digits"
begin
definition digit (‹[ _ = Digit _ _ _]› [999] 1000)
where "[D = Digit AA K BASE] ≡ (QUATERNARY (λd a k b. b > 1
∧ d = nth_digit a k b) D AA K BASE)"
lemma mod_dioph2[dioph]:
fixes A B C
defines "D ≡ (MOD A B C)"
shows "is_dioph_rel D"
proof -
define A' B' C' where pushed_defs: "A' ≡ push_param A 2" "B' ≡ push_param B 2" "C' ≡ push_param C 2"
define DS where "DS ≡ [∃2] (Param 0 [*] B' [+] C' [=] Param 1 [*] B' [+] A')"
have "eval DS a = eval D a" for a
proof
show "eval DS a ⟹ eval D a"
unfolding DS_def defs D_def mod_def
by auto (metis add.commute mod_mult_self1 push_push_simp pushed_defs(1)
pushed_defs(2) pushed_defs(3))
show "eval D a ⟹ eval DS a"
unfolding DS_def defs D_def mod_def
apply (auto simp: mod_repr)
subgoal for x y
apply (rule exI[of _ "[x, y]"])
unfolding pushed_defs by (simp add: push_push[where ?n = 2] push_list_eval)
done
qed
moreover have "is_dioph_rel DS"
unfolding DS_def by (simp add: dioph)
ultimately show ?thesis
by (auto simp: is_dioph_rel_def)
qed
lemma digit_dioph[dioph]:
fixes D A B K :: polynomial
defines "DR ≡ [D = Digit A K B]"
shows "is_dioph_rel DR"
proof -
define D' A' B' K' where pushed_defs:
"D' == (push_param D 4)" "A' == (push_param A 4)" "B' == (push_param B 4)" "K' == (push_param K 4)"
define x y where param_defs:
"x == (Param 0)" "y == (Param 1)"
define DS where "DS ≡ [∃4] ( B' [>] Const 1 [∧]
[(Param 2) = B' ^ (K' [+] Const 1)] [∧]
[(Param 3) = B' ^ K'] [∧]
A' [=] x [*] (Param 2) [+] D' [*] (Param 3) [+] y [∧]
D' [<] B' [∧]
y [<] (Param 3)) "
have "eval DS a = eval DR a" for a
proof
show "eval DS a ⟹ eval DR a"
unfolding DS_def defs DR_def digit_def apply auto
unfolding pushed_defs push_push using pushed_defs push_push digit_gen_equiv by auto
assume asm: "eval DR a"
then obtain x_val y_val where cond: "(peval A a) = x_val * (peval B a)^( (peval K a)+1)
+ (peval D a) * (peval B a)^ (peval K a) + y_val
∧ (peval D a) < (peval B a)
∧ y_val < (peval B a)^ (peval K a)"
unfolding DS_def defs DR_def digit_def using digit_gen_equiv by auto metis
show "eval DS a"
using asm unfolding DS_def defs DR_def digit_def apply auto
apply (rule exI[of _ "[x_val, y_val, (peval B a) ^ ((peval K a) + 1),
(peval B a) ^ (peval K a)]"])
unfolding pushed_defs using param_defs push_push push_list_def cond by auto+
qed
moreover have "is_dioph_rel DS"
unfolding DS_def by (simp add: dioph)
ultimately show ?thesis
by (auto simp: is_dioph_rel_def)
qed
declare digit_def[defs]
end