Theory Alpha_Sequence
subsection ‹Diophantine description of alpha function›
theory Alpha_Sequence
imports Modulo_Divisibility "Exponentiation"
begin
text ‹The alpha function is diophantine›
definition alpha (‹[_ = α _ _]› 1000)
where "[X = α B N] ≡ (TERNARY (λb n x. b > 3 ∧ x = Exp_Matrices.α b n) B N X)"
lemma alpha_dioph[dioph]:
fixes B N X
defines "D ≡ [X = α B N]"
shows "is_dioph_rel D"
proof -
define r s t u v w x y where param_defs:
"r == (Param 0)" "s == (Param 1)" "t == (Param 2)" "u == (Param 3)" "v == (Param 4)"
"w == (Param 5)" "x == (Param 6)" "y == (Param 7)"
define B' X' N' where pushed_defs: "B' == (push_param B 8)" "X' == (push_param X 8)"
"N' == (push_param N 8)"
define DR1 where "DR1 ≡ B' [>] (Const 3) [∧] (Const 1 [+] B' [*] u [*] t [=] u[^2] [+] t[^2])"
define DR2 where "DR2 ≡ (Const 1 [+] B' [*] s [*] r [=] s[^2] [+] r[^2]) [∧] r [<] s"
define DR3 where "DR3 ≡ (DVD (u[^2]) s) [∧] (v [+] (Const 2) [*] r [=] B' [*] s)"
define DR4 where "DR4 ≡ (MOD B' v w) [∧] (MOD (Const 2) u w) [∧] (Const 2) [<] w"
define DR5 where "DR5 ≡ (Const 1 [+] w [*] x [*] y [=] x[^2] [+] y[^2])"
define DR6 where "DR6 ≡ (Const 2) [*] X' [<] u [∧] (Const 2) [*] X' [<] v
[∧] (MOD x v X') [∧] (Const 2) [*] N' [<] u [∧] MOD x u N'"
define DR where "DR ≡ [∃8] DR1 [∧] DR2 [∧] DR3 [∧] DR4 [∧] DR5 [∧] DR6"
note DR_defs = DR1_def DR2_def DR3_def DR4_def DR5_def DR6_def
have "is_dioph_rel DR"
unfolding DR_def DR_defs
by (auto simp: dioph)
moreover have "eval D a = eval DR a" for a
proof -
define x_ev b n where evaled_defs: "x_ev ≡ peval X a" "b ≡ peval B a" "n ≡ peval N a"
have h: "eval D a = (∃r s t u v w x y::nat. Exp_Matrices.alpha_equations x_ev b n r s t u v w x y)"
unfolding D_def alpha_def evaled_defs defs using alpha_equivalence by simp
show ?thesis
proof (rule)
assume "eval D a"
then obtain r s t u v w x y :: nat where "Exp_Matrices.alpha_equations x_ev b n r s t u v w x y"
using h by auto
then show "eval DR a"
unfolding evaled_defs Exp_Matrices.alpha_equations_def
unfolding DR_def DR_defs defs param_defs apply (auto simp: sq_p_eval)
apply (rule exI[of _ "[r, s, t, u, v, w, x, y]"])
unfolding pushed_defs by (auto simp add: push_push[where ?n = 8] push_list_eval)
next
assume "eval DR a"
then show "eval D a"
unfolding DR_def DR_defs defs param_defs apply (auto simp: sq_p_eval)
unfolding pushed_defs apply (auto simp add: push_push[where ?n = 8] push_list_eval)
unfolding h Exp_Matrices.alpha_equations_def evaled_defs
subgoal for ks
apply (rule exI[of _ "ks!0"]) apply (rule exI[of _ "ks!1"]) apply (rule exI[of _ "ks!2"])
apply (rule exI[of _ "ks!3"]) apply (rule exI[of _ "ks!4"]) apply (rule exI[of _ "ks!5"])
apply (rule exI[of _ "ks!6"]) apply (rule exI[of _ "ks!7"])
by simp_all
done
qed
qed
ultimately show ?thesis
by (auto simp: is_dioph_rel_def)
qed
declare alpha_def[defs]
end