Theory HOL-Decision_Procs.Conversions
theory Conversions
imports Main
begin
ML ‹
fun tactic_of_conv cv i st =
if i > Thm.nprems_of st then Seq.empty
else Seq.single (Conv.gconv_rule cv i st);
fun binop_conv cv cv' = Conv.combination_conv (Conv.arg_conv cv) cv';
›
ML ‹
fun err s ct =
error (s ^ ": " ^ Syntax.string_of_term_global (Thm.theory_of_cterm ct) (Thm.term_of ct));
›
attribute_setup meta =
‹Scan.succeed (Thm.rule_attribute [] (K mk_meta_eq))›
‹convert equality to meta equality›
ML ‹
fun strip_app ct = ct |> Drule.strip_comb |>> Thm.term_of |>> dest_Const_name;
fun inst cTs cts th =
Thm.instantiate' (map SOME cTs) (map SOME cts) th;
fun transitive' eq eq' = Thm.transitive eq (eq' (Thm.rhs_of eq));
fun type_of_eqn eqn = Thm.ctyp_of_cterm (Thm.dest_arg1 (Thm.cprop_of eqn));
fun cong1 conv ct =
Thm.combination (Thm.reflexive (Thm.dest_fun ct)) (conv (Thm.dest_arg ct));
fun cong1' conv' conv ct =
let val eqn = conv (Thm.dest_arg ct)
in
Thm.transitive
(Thm.combination (Thm.reflexive (Thm.dest_fun ct)) eqn)
(conv' (Thm.rhs_of eqn))
end;
fun cong2 conv1 conv2 ct =
Thm.combination
(Thm.combination
(Thm.reflexive (Thm.dest_fun2 ct))
(conv1 (Thm.dest_arg1 ct)))
(conv2 (Thm.dest_arg ct));
fun cong2' conv conv1 conv2 ct =
let
val eqn1 = conv1 (Thm.dest_arg1 ct);
val eqn2 = conv2 (Thm.dest_arg ct)
in
Thm.transitive
(Thm.combination
(Thm.combination (Thm.reflexive (Thm.dest_fun2 ct)) eqn1)
eqn2)
(conv (Thm.rhs_of eqn1) (Thm.rhs_of eqn2))
end;
fun cong2'' conv eqn1 eqn2 =
let val eqn3 = conv (Thm.rhs_of eqn1) (Thm.rhs_of eqn2)
in
Thm.transitive
(Thm.combination
(Thm.combination (Thm.reflexive (Thm.dest_fun2 (Thm.lhs_of eqn3))) eqn1)
eqn2)
eqn3
end;
fun args1 conv ct = conv (Thm.dest_arg ct);
fun args2 conv ct = conv (Thm.dest_arg1 ct) (Thm.dest_arg ct);
›
ML ‹
fun strip_numeral ct = (case strip_app ct of
(\<^const_name>‹uminus›, [n]) => (case strip_app n of
(\<^const_name>‹numeral›, [b]) => (\<^const_name>‹uminus›, [b])
| _ => ("", []))
| x => x);
›
lemma nat_minus1_eq: "nat (- 1) = 0"
by simp
ML ‹
fun nat_conv i = (case strip_app i of
(\<^const_name>‹zero_class.zero›, []) => @{thm nat_0 [meta]}
| (\<^const_name>‹one_class.one›, []) => @{thm nat_one_as_int [meta, symmetric]}
| (\<^const_name>‹numeral›, [b]) => inst [] [b] @{thm nat_numeral [meta]}
| (\<^const_name>‹uminus›, [b]) => (case strip_app b of
(\<^const_name>‹one_class.one›, []) => @{thm nat_minus1_eq [meta]}
| (\<^const_name>‹numeral›, [b']) => inst [] [b'] @{thm nat_neg_numeral [meta]}));
›
ML ‹
fun add_num_conv b b' = (case (strip_app b, strip_app b') of
((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.One›, [])) =>
@{thm add_num_simps(1) [meta]}
| ((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.Bit0›, [n])) =>
inst [] [n] @{thm add_num_simps(2) [meta]}
| ((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.Bit1›, [n])) =>
transitive'
(inst [] [n] @{thm add_num_simps(3) [meta]})
(cong1 (args2 add_num_conv))
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.One›, [])) =>
inst [] [m] @{thm add_num_simps(4) [meta]}
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
transitive'
(inst [] [m, n] @{thm add_num_simps(5) [meta]})
(cong1 (args2 add_num_conv))
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
transitive'
(inst [] [m, n] @{thm add_num_simps(6) [meta]})
(cong1 (args2 add_num_conv))
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.One›, [])) =>
transitive'
(inst [] [m] @{thm add_num_simps(7) [meta]})
(cong1 (args2 add_num_conv))
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
transitive'
(inst [] [m, n] @{thm add_num_simps(8) [meta]})
(cong1 (args2 add_num_conv))
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
transitive'
(inst [] [m, n] @{thm add_num_simps(9) [meta]})
(cong1 (cong2' add_num_conv (args2 add_num_conv) Thm.reflexive)));
›
ML ‹
fun BitM_conv m = (case strip_app m of
(\<^const_name>‹Num.One›, []) => @{thm BitM.simps(1) [meta]}
| (\<^const_name>‹Num.Bit0›, [n]) =>
transitive'
(inst [] [n] @{thm BitM.simps(2) [meta]})
(cong1 (args1 BitM_conv))
| (\<^const_name>‹Num.Bit1›, [n]) =>
inst [] [n] @{thm BitM.simps(3) [meta]});
›
lemma dbl_neg_numeral:
"Num.dbl (- Num.numeral k) = - Num.numeral (Num.Bit0 k)"
by simp
ML ‹
fun dbl_conv a =
let
val dbl_neg_numeral_a = inst [a] [] @{thm dbl_neg_numeral [meta]};
val dbl_0_a = inst [a] [] @{thm dbl_simps(2) [meta]};
val dbl_numeral_a = inst [a] [] @{thm dbl_simps(5) [meta]}
in
fn n =>
case strip_numeral n of
(\<^const_name>‹zero_class.zero›, []) => dbl_0_a
| (\<^const_name>‹numeral›, [k]) => inst [] [k] dbl_numeral_a
| (\<^const_name>‹uminus›, [k]) => inst [] [k] dbl_neg_numeral_a
end;
›
lemma dbl_inc_neg_numeral:
"Num.dbl_inc (- Num.numeral k) = - Num.numeral (Num.BitM k)"
by simp
ML ‹
fun dbl_inc_conv a =
let
val dbl_inc_neg_numeral_a = inst [a] [] @{thm dbl_inc_neg_numeral [meta]};
val dbl_inc_0_a = inst [a] [] @{thm dbl_inc_simps(2) [folded numeral_One, meta]};
val dbl_inc_numeral_a = inst [a] [] @{thm dbl_inc_simps(5) [meta]};
in
fn n =>
case strip_numeral n of
(\<^const_name>‹zero_class.zero›, []) => dbl_inc_0_a
| (\<^const_name>‹numeral›, [k]) => inst [] [k] dbl_inc_numeral_a
| (\<^const_name>‹uminus›, [k]) =>
transitive'
(inst [] [k] dbl_inc_neg_numeral_a)
(cong1 (cong1 (args1 BitM_conv)))
end;
›
lemma dbl_dec_neg_numeral:
"Num.dbl_dec (- Num.numeral k) = - Num.numeral (Num.Bit1 k)"
by simp
ML ‹
fun dbl_dec_conv a =
let
val dbl_dec_neg_numeral_a = inst [a] [] @{thm dbl_dec_neg_numeral [meta]};
val dbl_dec_0_a = inst [a] [] @{thm dbl_dec_simps(2) [folded numeral_One, meta]};
val dbl_dec_numeral_a = inst [a] [] @{thm dbl_dec_simps(5) [meta]};
in
fn n =>
case strip_numeral n of
(\<^const_name>‹zero_class.zero›, []) => dbl_dec_0_a
| (\<^const_name>‹uminus›, [k]) => inst [] [k] dbl_dec_neg_numeral_a
| (\<^const_name>‹numeral›, [k]) =>
transitive'
(inst [] [k] dbl_dec_numeral_a)
(cong1 (args1 BitM_conv))
end;
›
ML ‹
fun sub_conv a =
let
val [sub_One_One, sub_One_Bit0, sub_One_Bit1,
sub_Bit0_One, sub_Bit1_One, sub_Bit0_Bit0,
sub_Bit0_Bit1, sub_Bit1_Bit0, sub_Bit1_Bit1] =
map (inst [a] []) @{thms sub_num_simps [meta]};
val dbl_conv_a = dbl_conv a;
val dbl_inc_conv_a = dbl_inc_conv a;
val dbl_dec_conv_a = dbl_dec_conv a;
fun conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.One›, [])) =>
sub_One_One
| ((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.Bit0›, [l])) =>
transitive'
(inst [] [l] sub_One_Bit0)
(cong1 (cong1 (args1 BitM_conv)))
| ((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.Bit1›, [l])) =>
inst [] [l] sub_One_Bit1
| ((\<^const_name>‹Num.Bit0›, [k]), (\<^const_name>‹Num.One›, [])) =>
transitive'
(inst [] [k] sub_Bit0_One)
(cong1 (args1 BitM_conv))
| ((\<^const_name>‹Num.Bit1›, [k]), (\<^const_name>‹Num.One›, [])) =>
inst [] [k] sub_Bit1_One
| ((\<^const_name>‹Num.Bit0›, [k]), (\<^const_name>‹Num.Bit0›, [l])) =>
transitive'
(inst [] [k, l] sub_Bit0_Bit0)
(cong1' dbl_conv_a (args2 conv))
| ((\<^const_name>‹Num.Bit0›, [k]), (\<^const_name>‹Num.Bit1›, [l])) =>
transitive'
(inst [] [k, l] sub_Bit0_Bit1)
(cong1' dbl_dec_conv_a (args2 conv))
| ((\<^const_name>‹Num.Bit1›, [k]), (\<^const_name>‹Num.Bit0›, [l])) =>
transitive'
(inst [] [k, l] sub_Bit1_Bit0)
(cong1' dbl_inc_conv_a (args2 conv))
| ((\<^const_name>‹Num.Bit1›, [k]), (\<^const_name>‹Num.Bit1›, [l])) =>
transitive'
(inst [] [k, l] sub_Bit1_Bit1)
(cong1' dbl_conv_a (args2 conv)))
in conv end;
›
ML ‹
fun expand1 a =
let val numeral_1_eq_1_a = inst [a] [] @{thm numeral_One [meta, symmetric]}
in
fn n =>
case Thm.term_of n of
\<^Const_>‹one_class.one _› => numeral_1_eq_1_a
| \<^Const_>‹uminus _ for \<^Const_>‹one_class.one _›› =>
Thm.combination (Thm.reflexive (Thm.dest_fun n)) numeral_1_eq_1_a
| \<^Const_>‹zero_class.zero _› => Thm.reflexive n
| \<^Const_>‹numeral _ for _› => Thm.reflexive n
| \<^Const_>‹uminus _ for \<^Const_>‹numeral _ for _›› => Thm.reflexive n
| _ => err "expand1" n
end;
fun norm1_eq a =
let val numeral_1_eq_1_a = inst [a] [] @{thm numeral_One [meta]}
in
fn eq =>
case Thm.term_of (Thm.rhs_of eq) of
\<^Const_>‹Num.numeral _ for \<^Const_>‹Num.One›› => Thm.transitive eq numeral_1_eq_1_a
| \<^Const_>‹uminus _ for \<^Const_>‹Num.numeral _ for \<^Const_>‹Num.One››› =>
Thm.transitive eq
(Thm.combination (Thm.reflexive (Thm.dest_fun (Thm.rhs_of eq)))
numeral_1_eq_1_a)
| _ => eq
end;
›
ML ‹
fun plus_conv f a =
let
val add_0_a = inst [a] [] @{thm add_0 [meta]};
val add_0_right_a = inst [a] [] @{thm add_0_right [meta]};
val numeral_plus_numeral_a = inst [a] [] @{thm numeral_plus_numeral [meta]};
val expand1_a = expand1 a;
fun conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹zero_class.zero›, []), _) => inst [] [n] add_0_a
| (_, (\<^const_name>‹zero_class.zero›, [])) => inst [] [m] add_0_right_a
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹numeral›, [n])) =>
transitive'
(inst [] [m, n] numeral_plus_numeral_a)
(cong1 (args2 add_num_conv))
| _ => cong2'' (f conv) (expand1_a m) (expand1_a n))
in f conv end;
val nat_plus_conv = plus_conv I \<^ctyp>‹nat›;
›
lemma neg_numeral_plus_neg_numeral:
"- Num.numeral m + - Num.numeral n = (- Num.numeral (m + n) ::'a::neg_numeral)"
by simp
ML ‹
fun plus_neg_conv a =
let
val numeral_plus_neg_numeral_a =
inst [a] [] @{thm add_neg_numeral_simps(1) [meta]};
val neg_numeral_plus_numeral_a =
inst [a] [] @{thm add_neg_numeral_simps(2) [meta]};
val neg_numeral_plus_neg_numeral_a =
inst [a] [] @{thm neg_numeral_plus_neg_numeral [meta]};
val sub_conv_a = sub_conv a;
in
fn conv => fn m => fn n =>
case (strip_numeral m, strip_numeral n) of
((\<^const_name>‹Num.numeral›, [m]), (\<^const_name>‹uminus›, [n])) =>
Thm.transitive
(inst [] [m, n] numeral_plus_neg_numeral_a)
(sub_conv_a m n)
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹Num.numeral›, [n])) =>
Thm.transitive
(inst [] [m, n] neg_numeral_plus_numeral_a)
(sub_conv_a n m)
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹uminus›, [n])) =>
transitive'
(inst [] [m, n] neg_numeral_plus_neg_numeral_a)
(cong1 (cong1 (args2 add_num_conv)))
| _ => conv m n
end;
fun plus_conv' a = norm1_eq a oo plus_conv (plus_neg_conv a) a;
val int_plus_conv = plus_conv' \<^ctyp>‹int›;
›
lemma minus_one: "- 1 = - 1" by simp
lemma minus_numeral: "- numeral b = - numeral b" by simp
ML ‹
fun uminus_conv a =
let
val minus_zero_a = inst [a] [] @{thm minus_zero [meta]};
val minus_one_a = inst [a] [] @{thm minus_one [meta]};
val minus_numeral_a = inst [a] [] @{thm minus_numeral [meta]};
val minus_minus_a = inst [a] [] @{thm minus_minus [meta]}
in
fn n =>
case strip_app n of
(\<^const_name>‹zero_class.zero›, []) => minus_zero_a
| (\<^const_name>‹one_class.one›, []) => minus_one_a
| (\<^const_name>‹Num.numeral›, [m]) => inst [] [m] minus_numeral_a
| (\<^const_name>‹uminus›, [m]) => inst [] [m] minus_minus_a
end;
val int_neg_conv = uminus_conv \<^ctyp>‹int›;
›
ML ‹
fun minus_conv a =
let
val [numeral_minus_numeral_a, numeral_minus_neg_numeral_a,
neg_numeral_minus_numeral_a, neg_numeral_minus_neg_numeral_a] =
map (inst [a] []) @{thms diff_numeral_simps [meta]};
val diff_0_a = inst [a] [] @{thm diff_0 [meta]};
val diff_0_right_a = inst [a] [] @{thm diff_0_right [meta]};
val sub_conv_a = sub_conv a;
val uminus_conv_a = uminus_conv a;
val expand1_a = expand1 a;
val norm1_eq_a = norm1_eq a;
fun conv m n = (case (strip_numeral m, strip_numeral n) of
((\<^const_name>‹zero_class.zero›, []), _) =>
Thm.transitive (inst [] [n] diff_0_a) (uminus_conv_a n)
| (_, (\<^const_name>‹zero_class.zero›, [])) => inst [] [m] diff_0_right_a
| ((\<^const_name>‹Num.numeral›, [m]), (\<^const_name>‹Num.numeral›, [n])) =>
Thm.transitive
(inst [] [m, n] numeral_minus_numeral_a)
(sub_conv_a m n)
| ((\<^const_name>‹Num.numeral›, [m]), (\<^const_name>‹uminus›, [n])) =>
transitive'
(inst [] [m, n] numeral_minus_neg_numeral_a)
(cong1 (args2 add_num_conv))
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹Num.numeral›, [n])) =>
transitive'
(inst [] [m, n] neg_numeral_minus_numeral_a)
(cong1 (cong1 (args2 add_num_conv)))
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹uminus›, [n])) =>
Thm.transitive
(inst [] [m, n] neg_numeral_minus_neg_numeral_a)
(sub_conv_a n m)
| _ => cong2'' conv (expand1_a m) (expand1_a n))
in norm1_eq_a oo conv end;
val int_minus_conv = minus_conv \<^ctyp>‹int›;
›
ML ‹
val int_numeral = Thm.apply \<^cterm>‹numeral :: num ⇒ int›;
val nat_minus_refl = Thm.reflexive \<^cterm>‹minus :: nat ⇒ nat ⇒ nat›;
val expand1_nat = expand1 \<^ctyp>‹nat›;
fun nat_minus_conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹zero_class.zero›, []), _) =>
inst [] [n] @{thm diff_0_eq_0 [meta]}
| (_, (\<^const_name>‹zero_class.zero›, [])) =>
inst [] [m] @{thm minus_nat.diff_0 [meta]}
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹numeral›, [n])) =>
transitive'
(inst [] [m, n] @{thm diff_nat_numeral [meta]})
(cong1' nat_conv (args2 int_minus_conv))
| _ => cong2'' nat_minus_conv (expand1_nat m) (expand1_nat n));
›
ML ‹
fun mult_num_conv m n = (case (strip_app m, strip_app n) of
(_, (\<^const_name>‹Num.One›, [])) =>
inst [] [m] @{thm mult_num_simps(1) [meta]}
| ((\<^const_name>‹Num.One›, []), _) =>
inst [] [n] @{thm mult_num_simps(2) [meta]}
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
transitive'
(inst [] [m, n] @{thm mult_num_simps(3) [meta]})
(cong1 (cong1 (args2 mult_num_conv)))
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit1›, [n'])) =>
transitive'
(inst [] [m, n'] @{thm mult_num_simps(4) [meta]})
(cong1 (args2 mult_num_conv))
| ((\<^const_name>‹Num.Bit1›, [m']), (\<^const_name>‹Num.Bit0›, [n])) =>
transitive'
(inst [] [m', n] @{thm mult_num_simps(5) [meta]})
(cong1 (args2 mult_num_conv))
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
transitive'
(inst [] [m, n] @{thm mult_num_simps(6) [meta]})
(cong1 (cong2' add_num_conv
(args2 add_num_conv)
(cong1 (args2 mult_num_conv)))));
›
ML ‹
fun mult_conv f a =
let
val mult_zero_left_a = inst [a] [] @{thm mult_zero_left [meta]};
val mult_zero_right_a = inst [a] [] @{thm mult_zero_right [meta]};
val numeral_times_numeral_a = inst [a] [] @{thm numeral_times_numeral [meta]};
val expand1_a = expand1 a;
val norm1_eq_a = norm1_eq a;
fun conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹zero_class.zero›, []), _) => inst [] [n] mult_zero_left_a
| (_, (\<^const_name>‹zero_class.zero›, [])) => inst [] [m] mult_zero_right_a
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹numeral›, [n])) =>
transitive'
(inst [] [m, n] numeral_times_numeral_a)
(cong1 (args2 mult_num_conv))
| _ => cong2'' (f conv) (expand1_a m) (expand1_a n))
in norm1_eq_a oo f conv end;
val nat_mult_conv = mult_conv I \<^ctyp>‹nat›;
›
ML ‹
fun mult_neg_conv a =
let
val [neg_numeral_times_neg_numeral_a, neg_numeral_times_numeral_a,
numeral_times_neg_numeral_a] =
map (inst [a] []) @{thms mult_neg_numeral_simps [meta]};
in
fn conv => fn m => fn n =>
case (strip_numeral m, strip_numeral n) of
((\<^const_name>‹uminus›, [m]), (\<^const_name>‹uminus›, [n])) =>
transitive'
(inst [] [m, n] neg_numeral_times_neg_numeral_a)
(cong1 (args2 mult_num_conv))
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹numeral›, [n])) =>
transitive'
(inst [] [m, n] neg_numeral_times_numeral_a)
(cong1 (cong1 (args2 mult_num_conv)))
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹uminus›, [n])) =>
transitive'
(inst [] [m, n] numeral_times_neg_numeral_a)
(cong1 (cong1 (args2 mult_num_conv)))
| _ => conv m n
end;
fun mult_conv' a = mult_conv (mult_neg_conv a) a;
val int_mult_conv = mult_conv' \<^ctyp>‹int›;
›
ML ‹
fun eq_num_conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.One›, [])) =>
@{thm eq_num_simps(1) [meta]}
| ((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.Bit0›, [n])) =>
inst [] [n] @{thm eq_num_simps(2) [meta]}
| ((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.Bit1›, [n])) =>
inst [] [n] @{thm eq_num_simps(3) [meta]}
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.One›, [])) =>
inst [] [m] @{thm eq_num_simps(4) [meta]}
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.One›, [])) =>
inst [] [m] @{thm eq_num_simps(5) [meta]}
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm eq_num_simps(6) [meta]})
(eq_num_conv m n)
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
inst [] [m, n] @{thm eq_num_simps(7) [meta]}
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
inst [] [m, n] @{thm eq_num_simps(8) [meta]}
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm eq_num_simps(9) [meta]})
(eq_num_conv m n));
›
ML ‹
fun eq_conv f a =
let
val zero_eq_zero_a = inst [a] [] @{thm refl [of 0, THEN Eq_TrueI]};
val zero_neq_numeral_a =
inst [a] [] @{thm zero_neq_numeral [THEN Eq_FalseI]};
val numeral_neq_zero_a =
inst [a] [] @{thm numeral_neq_zero [THEN Eq_FalseI]};
val numeral_eq_iff_a = inst [a] [] @{thm numeral_eq_iff [meta]};
val expand1_a = expand1 a;
fun conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹zero_class.zero›, [])) =>
zero_eq_zero_a
| ((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹numeral›, [n])) =>
inst [] [n] zero_neq_numeral_a
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹zero_class.zero›, [])) =>
inst [] [m] numeral_neq_zero_a
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹numeral›, [n])) =>
Thm.transitive
(inst [] [m, n] numeral_eq_iff_a)
(eq_num_conv m n)
| _ => cong2'' (f conv) (expand1_a m) (expand1_a n))
in f conv end;
val nat_eq_conv = eq_conv I \<^ctyp>‹nat›;
›
ML ‹
fun eq_neg_conv a =
let
val neg_numeral_neq_zero_a =
inst [a] [] @{thm neg_numeral_neq_zero [THEN Eq_FalseI]};
val zero_neq_neg_numeral_a =
inst [a] [] @{thm zero_neq_neg_numeral [THEN Eq_FalseI]};
val neg_numeral_neq_numeral_a =
inst [a] [] @{thm neg_numeral_neq_numeral [THEN Eq_FalseI]};
val numeral_neq_neg_numeral_a =
inst [a] [] @{thm numeral_neq_neg_numeral [THEN Eq_FalseI]};
val neg_numeral_eq_iff_a = inst [a] [] @{thm neg_numeral_eq_iff [meta]}
in
fn conv => fn m => fn n =>
case (strip_numeral m, strip_numeral n) of
((\<^const_name>‹uminus›, [m]), (\<^const_name>‹zero_class.zero›, [])) =>
inst [] [m] neg_numeral_neq_zero_a
| ((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹uminus›, [n])) =>
inst [] [n] zero_neq_neg_numeral_a
| ((\<^const_name>‹Num.numeral›, [m]), (\<^const_name>‹uminus›, [n])) =>
inst [] [m, n] numeral_neq_neg_numeral_a
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹Num.numeral›, [n])) =>
inst [] [m, n] neg_numeral_neq_numeral_a
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹uminus›, [n])) =>
Thm.transitive
(inst [] [m, n] neg_numeral_eq_iff_a)
(eq_num_conv m n)
| _ => conv m n
end;
fun eq_conv' a = eq_conv (eq_neg_conv a) a;
val int_eq_conv = eq_conv' \<^ctyp>‹int›;
›
ML ‹
fun le_num_conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹Num.One›, []), _) =>
inst [] [n] @{thm le_num_simps(1) [meta]}
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.One›, [])) =>
inst [] [m] @{thm le_num_simps(2) [meta]}
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.One›, [])) =>
inst [] [m] @{thm le_num_simps(3) [meta]}
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm le_num_simps(4) [meta]})
(le_num_conv m n)
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm le_num_simps(5) [meta]})
(le_num_conv m n)
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm le_num_simps(6) [meta]})
(le_num_conv m n)
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm le_num_simps(7) [meta]})
(less_num_conv m n))
and less_num_conv m n = (case (strip_app m, strip_app n) of
(_, (\<^const_name>‹Num.One›, [])) =>
inst [] [m] @{thm less_num_simps(1) [meta]}
| ((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.Bit0›, [n])) =>
inst [] [n] @{thm less_num_simps(2) [meta]}
| ((\<^const_name>‹Num.One›, []), (\<^const_name>‹Num.Bit1›, [n])) =>
inst [] [n] @{thm less_num_simps(3) [meta]}
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm less_num_simps(4) [meta]})
(less_num_conv m n)
| ((\<^const_name>‹Num.Bit0›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm less_num_simps(5) [meta]})
(le_num_conv m n)
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit1›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm less_num_simps(6) [meta]})
(less_num_conv m n)
| ((\<^const_name>‹Num.Bit1›, [m]), (\<^const_name>‹Num.Bit0›, [n])) =>
Thm.transitive
(inst [] [m, n] @{thm less_num_simps(7) [meta]})
(less_num_conv m n));
›
ML ‹
fun le_conv f a =
let
val zero_le_zero_a = inst [a] [] @{thm order_refl [of 0, THEN Eq_TrueI]};
val zero_le_numeral_a =
inst [a] [] @{thm zero_le_numeral [THEN Eq_TrueI]};
val not_numeral_le_zero_a =
inst [a] [] @{thm not_numeral_le_zero [THEN Eq_FalseI]};
val numeral_le_iff_a = inst [a] [] @{thm numeral_le_iff [meta]};
val expand1_a = expand1 a;
fun conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹zero_class.zero›, [])) =>
zero_le_zero_a
| ((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹numeral›, [n])) =>
inst [] [n] zero_le_numeral_a
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹zero_class.zero›, [])) =>
inst [] [m] not_numeral_le_zero_a
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹numeral›, [n])) =>
Thm.transitive
(inst [] [m, n] numeral_le_iff_a)
(le_num_conv m n)
| _ => cong2'' (f conv) (expand1_a m) (expand1_a n))
in f conv end;
val nat_le_conv = le_conv I \<^ctyp>‹nat›;
›
ML ‹
fun le_neg_conv a =
let
val neg_numeral_le_zero_a =
inst [a] [] @{thm neg_numeral_le_zero [THEN Eq_TrueI]};
val not_zero_le_neg_numeral_a =
inst [a] [] @{thm not_zero_le_neg_numeral [THEN Eq_FalseI]};
val neg_numeral_le_numeral_a =
inst [a] [] @{thm neg_numeral_le_numeral [THEN Eq_TrueI]};
val not_numeral_le_neg_numeral_a =
inst [a] [] @{thm not_numeral_le_neg_numeral [THEN Eq_FalseI]};
val neg_numeral_le_iff_a = inst [a] [] @{thm neg_numeral_le_iff [meta]}
in
fn conv => fn m => fn n =>
case (strip_numeral m, strip_numeral n) of
((\<^const_name>‹uminus›, [m]), (\<^const_name>‹zero_class.zero›, [])) =>
inst [] [m] neg_numeral_le_zero_a
| ((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹uminus›, [n])) =>
inst [] [n] not_zero_le_neg_numeral_a
| ((\<^const_name>‹Num.numeral›, [m]), (\<^const_name>‹uminus›, [n])) =>
inst [] [m, n] not_numeral_le_neg_numeral_a
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹Num.numeral›, [n])) =>
inst [] [m, n] neg_numeral_le_numeral_a
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹uminus›, [n])) =>
Thm.transitive
(inst [] [m, n] neg_numeral_le_iff_a)
(le_num_conv n m)
| _ => conv m n
end;
fun le_conv' a = le_conv (le_neg_conv a) a;
val int_le_conv = le_conv' \<^ctyp>‹int›;
›
ML ‹
fun less_conv f a =
let
val not_zero_less_zero_a = inst [a] [] @{thm less_irrefl [of 0, THEN Eq_FalseI]};
val zero_less_numeral_a =
inst [a] [] @{thm zero_less_numeral [THEN Eq_TrueI]};
val not_numeral_less_zero_a =
inst [a] [] @{thm not_numeral_less_zero [THEN Eq_FalseI]};
val numeral_less_iff_a = inst [a] [] @{thm numeral_less_iff [meta]};
val expand1_a = expand1 a;
fun conv m n = (case (strip_app m, strip_app n) of
((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹zero_class.zero›, [])) =>
not_zero_less_zero_a
| ((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹numeral›, [n])) =>
inst [] [n] zero_less_numeral_a
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹zero_class.zero›, [])) =>
inst [] [m] not_numeral_less_zero_a
| ((\<^const_name>‹numeral›, [m]), (\<^const_name>‹numeral›, [n])) =>
Thm.transitive
(inst [] [m, n] numeral_less_iff_a)
(less_num_conv m n)
| _ => cong2'' (f conv) (expand1_a m) (expand1_a n))
in f conv end;
val nat_less_conv = less_conv I \<^ctyp>‹nat›;
›
ML ‹
fun less_neg_conv a =
let
val neg_numeral_less_zero_a =
inst [a] [] @{thm neg_numeral_less_zero [THEN Eq_TrueI]};
val not_zero_less_neg_numeral_a =
inst [a] [] @{thm not_zero_less_neg_numeral [THEN Eq_FalseI]};
val neg_numeral_less_numeral_a =
inst [a] [] @{thm neg_numeral_less_numeral [THEN Eq_TrueI]};
val not_numeral_less_neg_numeral_a =
inst [a] [] @{thm not_numeral_less_neg_numeral [THEN Eq_FalseI]};
val neg_numeral_less_iff_a = inst [a] [] @{thm neg_numeral_less_iff [meta]}
in
fn conv => fn m => fn n =>
case (strip_numeral m, strip_numeral n) of
((\<^const_name>‹uminus›, [m]), (\<^const_name>‹zero_class.zero›, [])) =>
inst [] [m] neg_numeral_less_zero_a
| ((\<^const_name>‹zero_class.zero›, []), (\<^const_name>‹uminus›, [n])) =>
inst [] [n] not_zero_less_neg_numeral_a
| ((\<^const_name>‹Num.numeral›, [m]), (\<^const_name>‹uminus›, [n])) =>
inst [] [m, n] not_numeral_less_neg_numeral_a
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹Num.numeral›, [n])) =>
inst [] [m, n] neg_numeral_less_numeral_a
| ((\<^const_name>‹uminus›, [m]), (\<^const_name>‹uminus›, [n])) =>
Thm.transitive
(inst [] [m, n] neg_numeral_less_iff_a)
(less_num_conv n m)
| _ => conv m n
end;
fun less_conv' a = less_conv (less_neg_conv a) a;
val int_less_conv = less_conv' \<^ctyp>‹int›;
›
ML ‹
fun If_conv a =
let
val if_True = inst [a] [] @{thm if_True [meta]};
val if_False = inst [a] [] @{thm if_False [meta]}
in
fn p => fn x => fn y => fn ct =>
case strip_app ct of
(\<^const_name>‹If›, [cb, cx, cy]) =>
let
val p_eq = p cb
val eq = Thm.combination (Thm.reflexive (Thm.dest_fun (Thm.dest_fun2 ct))) p_eq
in
case Thm.term_of (Thm.rhs_of p_eq) of
\<^Const_>‹True› =>
let
val x_eq = x cx;
val cx = Thm.rhs_of x_eq;
in
Thm.transitive
(Thm.combination
(Thm.combination eq x_eq)
(Thm.reflexive cy))
(inst [] [cx, cy] if_True)
end
| \<^Const_>‹False› =>
let
val y_eq = y cy;
val cy = Thm.rhs_of y_eq;
in
Thm.transitive
(Thm.combination
(Thm.combination eq (Thm.reflexive cx))
y_eq)
(inst [] [cx, cy] if_False)
end
| _ => err "If_conv" (Thm.rhs_of p_eq)
end
end;
›
ML ‹
fun drop_conv a =
let
val drop_0_a = inst [a] [] @{thm drop_0 [meta]};
val drop_Cons_a = inst [a] [] @{thm drop_Cons' [meta]};
val If_conv_a = If_conv (type_of_eqn drop_0_a);
fun conv n ys = (case Thm.term_of n of
\<^Const_>‹zero_class.zero _› => inst [] [ys] drop_0_a
| _ => (case strip_app ys of
(\<^const_name>‹Cons›, [x, xs]) =>
transitive'
(inst [] [n, x, xs] drop_Cons_a)
(If_conv_a (args2 nat_eq_conv)
Thm.reflexive
(cong2' conv (args2 nat_minus_conv) Thm.reflexive))))
in conv end;
›
ML ‹
fun nth_conv a =
let
val nth_Cons_a = inst [a] [] @{thm nth_Cons' [meta]};
val If_conv_a = If_conv a;
fun conv ys n = (case strip_app ys of
(\<^const_name>‹Cons›, [x, xs]) =>
transitive'
(inst [] [x, xs, n] nth_Cons_a)
(If_conv_a (args2 nat_eq_conv)
Thm.reflexive
(cong2' conv Thm.reflexive (args2 nat_minus_conv))))
in conv end;
›
end