Theory ListExtras
section ‹Auxiliary Theory ListExtras.thy›
theory ListExtras
imports Main
begin
:: "'a list ⇒ 'a list ⇒ bool"
where
"disjoint x y ≡ (set x) ∩ (set y) = {}"
:: "'a ⇒ 'a list ⇒ bool" (infixr ‹mem› 65)
where
"x mem [] = False" |
"x mem (y # l) = ((x = y) ∨ (x mem l))"
:: "'a ⇒ 'a list ⇒ bool"
where
"memS x l ≡ x ∈ (set l)"
lemma : "x mem l ≡ memS x l"
proof (induct l)
case Nil
from this show ?case by (simp add: memS_def)
next
fix a la case (Cons a la)
from Cons show ?case by (simp add: memS_def)
qed
lemma :
assumes "a mem l"
shows "a ∈ set l"
using assms by (metis memS_def mem_memS_eq)
lemma :
assumes "a ∈ set l"
shows "a mem l"
using assms by (metis (full_types) memS_def mem_memS_eq)
lemma :
assumes "x mem l1"
and "x mem l2"
shows "set l1 ∩ set l2 ≠ {}"
using assms by (metis IntI empty_iff mem_set_1)
lemma :
assumes "x mem l1"
and "x mem l2"
shows "¬ disjoint l1 l2"
using assms by (metis disjoint_def set_inter_mem)
lemma :
assumes h1:"disjoint (schedule A) (schedule B)"
and h2:"x mem schedule A"
shows "¬ x mem schedule B"
proof -
{ assume " x mem schedule B"
from h2 and this have "¬ disjoint (schedule A) (schedule B)"
by (simp add: mem_notdisjoint)
from h1 and this have "False" by simp
} then have "¬ x mem schedule B" by blast
then show ?thesis by simp
qed
lemma :
assumes "0 < b"
shows "(Suc a - b < Suc a) = True"
using assms by auto
lemma :
assumes "l ≠ []"
shows "0 < length l"
using assms by simp
lemma :
assumes "l ≠ []"
shows "0 < length l"
using assms by simp
lemma :
assumes "length x = Suc 0"
shows "[hd x] = x"
using assms
by (metis Zero_neq_Suc list.sel(1) length_Suc_conv neq_Nil_conv)
lemma :
assumes "length l = Suc 0"
shows "tl l = []"
using assms
by (metis list_length_hint2 list.sel(3))
lemma :
assumes "length l = Suc 0"
shows "l ≠ []"
using assms
by (metis Zero_neq_Suc list.size(3))
lemma :
assumes "length x ≤ Suc 0"
and "x ≠ []"
shows "length x = Suc 0"
using assms
by (metis le_0_eq le_Suc_eq length_greater_0_conv less_numeral_extra(3))
lemma :
assumes "x ≠ []"
shows "Suc 0 ≤ length x"
using assms
by (metis length_greater_0_conv less_eq_Suc_le)
lemma :
assumes "x ≠ []"
shows "x ! ((length x) - Suc 0) = last x"
using assms
by (metis One_nat_def last_conv_nth)
lemma :
assumes "i < length x"
shows "x ! i = (x @ z) ! i"
using assms
by (metis nth_append)
lemma :
assumes "i < length x"
shows "(b # x) ! i = (b # x @ y) ! i"
proof -
from assms have "i < length (b # x)" by auto
then have sg2: "(b # x) ! i = ((b # x) @ y) ! i"
by (rule list_nth_append0)
then show ?thesis by simp
qed
lemma :
assumes "i < Suc (length x)"
shows "(b # x) ! i = (b # x @ a # y) ! i"
using assms
by (metis Cons_eq_appendI length_Suc_conv list_nth_append0)
lemma :
assumes h1:"¬ i < Suc (length x)"
and "i - Suc (length x) < Suc (length y)"
shows "(a # y) ! (i - Suc (length x)) = (b # x @ a # y) ! i"
proof (cases i)
assume "i=0"
with h1 show ?thesis by (simp add: nth_append)
next
fix ii assume "i = Suc ii"
with h1 show ?thesis by (simp add: nth_append)
qed
lemma :
assumes "i < Suc (length x + length y)"
and "¬ i - Suc (length x) < Suc (length y)"
shows "False"
using assms by arith
lemma :
assumes "i - length x < Suc (length y)"
and "¬ i - Suc (length x) < Suc (length y)"
shows "¬ i < Suc (length x + length y)"
using assms by arith
lemma :
assumes "¬ i - length x < Suc (length y)"
and "¬ i - Suc (length x) < Suc (length y)"
shows "¬ i < Suc (length x + length y)"
using assms by arith
lemma :
assumes "i < Suc (length x + length y)"
and "¬ i - length x < Suc (length y)"
shows "False"
using assms by arith
lemma :
assumes "i - length x < Suc (length y)"
and "i - Suc (length x) < Suc (length y)"
shows "i < Suc (Suc (length x + length y))"
using assms by arith
lemma :
assumes "¬ i < Suc (length x + length y)"
and "i < Suc (Suc (length x + length y))"
shows "i = Suc (length x + length y)"
using assms by arith
lemma :
assumes "i - Suc (length x) < Suc (length y)"
shows "i < Suc (Suc (length x + length y))"
using assms by arith
lemma :
assumes "¬ i < Suc (length x)"
and "¬ i - Suc (length x) < Suc (length y)"
shows "¬ i < Suc (Suc (length x + length y))"
using assms by arith
end