Theory Contrasimulation

section ‹Contrasimulation›

theory Contrasimulation
imports
  Weak_Relations
begin

context lts_tau
begin

subsection ‹Definition of Contrasimulation›

definition contrasimulation ::
  ('s  's  bool)  bool
where
  contrasimulation R   p q p' A . ( a  set(A). a  τ)  R p q  (p ⇒$ A p') 
    ( q'. (q ⇒$ A q')  R q' p')

lemma contrasim_simpler_def:
  shows contrasimulation R =
    ( p q p' A . R p q  (p ⇒$ A p')  ( q'. (q ⇒$ A q')  R q' p'))
proof -
  have A. aset (filter (λa. a  τ) A). a  τ by auto
  then show ?thesis
    unfolding contrasimulation_def
    using word_steps_ignore_tau_addition word_steps_ignore_tau_removal
    by metis
qed

abbreviation contrasimulated_by :: 's  's  bool (‹_ ⊑c  _› [60, 60] 65)
  where contrasimulated_by p q   R . contrasimulation R  R p q

lemma contrasim_preorder_is_contrasim:
  shows contrasimulation (λ p q . p ⊑c q)
  unfolding contrasimulation_def
  by metis

lemma contrasim_preorder_is_greatest:
  assumes contrasimulation R
  shows  p q. R p q  p ⊑c q
  using assms by auto

lemma contrasim_tau_step:
  contrasimulation (λ p1 q1 . q1 ⟼* tau p1)
  unfolding contrasimulation_def
  using steps.simps tau_tau tau_word_concat
  by metis

lemma contrasim_trans_constructive:
  fixes R1 R2
  defines
    R  λ p q .  pq . (R1 p pq  R2 pq q)  (R2 p pq  R1 pq q)
  assumes
    R1_def: contrasimulation R1 R1 p pq and
    R2_def: contrasimulation R2 R2 pq q
  shows
    R p q contrasimulation R
  using assms(2,3,4,5) unfolding R_def contrasimulation_def by metis+

lemma contrasim_trans:
  assumes
    p ⊑c pq
    pq ⊑c q
  shows
    p ⊑c q
  using assms contrasim_trans_constructive by blast

lemma contrasim_refl:
  shows
    p ⊑c p
  using contrasim_tau_step steps.refl by blast

lemma contrasimilarity_equiv:
  defines contrasimilarity  λ p q. p ⊑c q  q ⊑c p
  shows equivp contrasimilarity
proof -
  have reflp contrasimilarity
    using contrasim_refl unfolding contrasimilarity_def reflp_def by blast
  moreover have symp contrasimilarity
    unfolding contrasimilarity_def symp_def by blast
  moreover have transp contrasimilarity
    using contrasim_trans unfolding contrasimilarity_def transp_def by meson
  ultimately show ?thesis using equivpI by blast
qed

lemma contrasim_implies_trace_incl:
  assumes contrasimulation R
  shows trace_inclusion R
by (metis assms contrasim_simpler_def trace_inclusion_def) 

lemma contrasim_coupled:
  assumes
    contrasimulation R
    R p q
  shows
     q'. q ⟼* tau q'  R q' p
  using assms steps.refl[of p tau] weak_step_seq.simps(1)
  unfolding contrasim_simpler_def by blast

lemma contrasim_taufree_symm:
  assumes
    contrasimulation R
    R p q
    stable_state q
  shows
    R q p
  using contrasim_coupled assms stable_tauclosure_only_loop by blast

lemma symm_contrasim_is_weak_bisim:
  assumes
    contrasimulation R
     p q. R p q  R q p
  shows
    weak_bisimulation R
  using assms unfolding contrasim_simpler_def weak_sim_word weak_bisim_weak_sim by blast

lemma contrasim_weakest_bisim:
  assumes
    contrasimulation R
     p q a. p  a q  ¬ tau a
  shows
    bisimulation R
  using assms contrasim_taufree_symm symm_contrasim_is_weak_bisim weak_bisim_taufree_strong
  by blast

lemma symm_weak_sim_is_contrasim:
  assumes
    weak_simulation R
     p q. R p q  R q p
  shows
    contrasimulation R
  using assms unfolding contrasim_simpler_def weak_sim_word by blast

subsection ‹Intermediate Relation Mimicking Contrasim›

definition mimicking :: "('s  's set  bool)  's  's set  bool" where 
mimicking R p' Q'  p Q A.
  R p Q  p ⇒$A p'  
  (a  set A. a  τ)  
  Q' = (dsuccs_seq_rec (rev A) Q)

definition set_lifted :: "('s  's  bool)  's  's set  bool" where 
set_lifted R p Q  q. R p q  Q = {q}

lemma R_is_in_mimicking_of_R : 
  assumes R p Q
  shows mimicking R p Q
  using assms steps.refl lts_tau.weak_step_seq.simps(1)
  unfolding mimicking_def by fastforce

lemma mimicking_of_C_guarantees_tau_succ:
  assumes
    contrasimulation C
    mimicking (set_lifted C) p Q
    p ⇒^τ p'
  shows q'. q'  (weak_tau_succs Q)  mimicking (set_lifted C) q' {p'}
proof -
  obtain p0 Q0 A q0
      where (set_lifted C) p0 Q0 p0 ⇒$A p a  set A. a  τ Q0 = {q0} 
        and Q_def: Q = (dsuccs_seq_rec (rev A) Q0) 
      using mimicking_def assms set_lifted_def by metis
  hence C p0 q0 using set_lifted_def by auto 
  have p0 ⇒$(A@[τ]) p' using p0 ⇒$A p  p ⇒^τ  p' rev_seq_step_concat by auto
  hence word: p0 ⇒$A p' 
    by (metis aset A. a  τ app_tau_taufree_list tau_def weak_step_over_tau)
  then obtain q' where q0 ⇒$A q' C q' p' 
    using assms contrasimulation_def[of C] C p0 q0 a  set A. a  τ by blast
  hence (set_lifted C) q' {p'} using set_lifted_def by auto
  hence in_mimicking: mimicking (set_lifted C) q' {p'} using R_is_in_mimicking_of_R  by auto
  have q'  weak_tau_succs (dsuccs_seq_rec (rev A) Q0) 
    using Q0 = {q0} q0 ⇒$ A q'
    by (simp add: word_reachable_implies_in_dsuccs) 
  hence q'  weak_tau_succs Q using Q_def by simp 
  thus q'. q'  weak_tau_succs Q  mimicking (set_lifted C) q' {p'} using in_mimicking by auto
qed

lemma mimicking_of_C_guarantees_action_succ:
 assumes 
    contrasimulation C
    mimicking (set_lifted C) p Q
    p =⊳a p'
    a  τ
  shows mimicking (set_lifted C) p' (dsuccs a Q)
proof -
  obtain p0 Q0 A q0
    where (set_lifted C) p0 Q0 p0 ⇒$A p Q0 = {q0} a  set A. a  τ 
      and Q_def: Q = (dsuccs_seq_rec (rev A) Q0) 
    using mimicking_def assms set_lifted_def by metis
  then obtain CS where CS_def: contrasimulation CS  CS p0 q0 
    using assms set_lifted_def by (metis singleton_inject) 
  have notau: a  set (A@[a]). a  τ 
    using a  τ a  set A. a  τ by auto
  have  p a  p' using assms(3,4) steps.refl tau_def by auto 
  hence word: p0 ⇒$(A@[a]) p'
    using p0 ⇒$A p  rev_seq_step_concat
    by (meson steps.step steps_concat)
  then obtain q' where q0 ⇒$(A@[a]) q'  CS q' p' 
    using CS_def contrasimulation_def[of CS] notau
    by fastforce
  hence q'  weak_tau_succs (dsuccs_seq_rec (rev (A@[a])) {q0}) 
    using word_reachable_implies_in_dsuccs by blast
  then obtain q1 where q1  dsuccs_seq_rec (rev (A@[a])) {q0} q1 ⇒^τ q'
    using weak_tau_succs_def[of dsuccs_seq_rec (rev (A@[a])) {q0}] by auto
  thus ?thesis
    using word mimicking_def[of (set_lifted C)] (set_lifted C) p0 Q0 
      Q0 = {q0} Q_def notau simp_dsuccs_seq_rev by meson
qed

subsection ‹Over-Approximating Contrasimulation by a Single-Step Version›

definition contrasim_step ::
  ('s  's  bool)  bool
where
  contrasim_step R   p q p' a .
    R p q  (p ⇒^a p') 
    ( q'. (q ⇒^a q')
          R q' p')

lemma contrasim_step_weaker_than_seq:
  assumes
    contrasimulation R
  shows
    contrasim_step R
  unfolding contrasim_step_def
proof ((rule allI impI)+)
  fix p q p' a
  assume
    R p q  p ⇒^a  p'
  hence
    R p q p ⇒^a  p' by safe
  hence p ⇒$ [a]  p' by safe
  then obtain q' where R q' p' q ⇒$ [a]  q'
    using assms `R p q` unfolding contrasim_simpler_def by blast
  hence q ⇒^a  q' by blast
  thus q'. q ⇒^a  q'  R q' p' using `R q' p'` by blast
qed

lemma contrasim_step_seq_coincide_for_sims:
  assumes
    contrasim_step R
    weak_simulation R
  shows
    contrasimulation R
  unfolding contrasimulation_def
proof (clarify)
  fix p q p' A
  assume
    R p q
    p ⇒$ A  p'
  thus q'. q ⇒$ A  q'  R q' p'
  proof (induct A arbitrary: p p' q)
    case Nil
    then show ?case using assms(1) unfolding contrasim_step_def
      using tau_tau weak_step_seq.simps(1) by blast
  next
    case (Cons a A)
    then obtain p1 where p1_def: p ⇒^a p1 p1 ⇒$ (A)  p' by auto
    then obtain q1 where q1_def: q ⇒^a q1 R p1 q1
      using assms(2) `R p q` unfolding weak_sim_weak_premise by blast
    then obtain q' where q1 ⇒$ (A)  q' R q' p' using p1_def(2) Cons(1) by blast
    then show ?case using q1_def(1) by auto
  qed
qed

end
end