Theory N_Semirings_Modal
section ‹Modal N-Semirings›
theory N_Semirings_Modal
imports N_Semirings_Boolean
begin
class n_diamond_semiring = n_semiring + diamond +
assumes ndiamond_def: "|x>y = n(x * y * L)"
begin
lemma diamond_x_bot:
"|x>bot = n(x)"
using n_mult_bot ndiamond_def mult_assoc by auto
lemma diamond_x_1:
"|x>1 = n(x * L)"
by (simp add: ndiamond_def)
lemma diamond_x_L:
"|x>L = n(x * L)"
by (simp add: L_left_zero ndiamond_def mult_assoc)
lemma diamond_x_top:
"|x>top = n(x * L)"
by (metis mult_assoc n_top_L ndiamond_def top_mult_top)
lemma diamond_x_n:
"|x>n(y) = n(x * y)"
by (simp add: n_mult ndiamond_def)
lemma diamond_bot_y:
"|bot>y = bot"
by (simp add: n_bot ndiamond_def)
lemma diamond_1_y:
"|1>y = n(y * L)"
by (simp add: ndiamond_def)
lemma diamond_1_n:
"|1>n(y) = n(y)"
by (simp add: diamond_1_y n_n_L)
lemma diamond_L_y:
"|L>y = 1"
by (simp add: L_left_zero n_L ndiamond_def)
lemma diamond_top_y:
"|top>y = 1"
by (metis sup_left_top sup_right_top diamond_L_y mult_right_dist_sup n_dist_sup n_top ndiamond_def)
lemma diamond_n_y:
"|n(x)>y = n(x) * n(y * L)"
by (simp add: n_export ndiamond_def mult_assoc)
lemma diamond_n_bot:
"|n(x)>bot = bot"
by (simp add: n_bot n_mult_right_bot ndiamond_def)
lemma diamond_n_1:
"|n(x)>1 = n(x)"
using diamond_1_n diamond_1_y diamond_x_1 by auto
lemma diamond_n_n:
"|n(x)>n(y) = n(x) * n(y)"
by (simp add: diamond_x_n n_export)
lemma diamond_n_n_same:
"|n(x)>n(x) = n(x)"
by (simp add: diamond_n_n n_mult_idempotent)
text ‹Theorem 23.1›
lemma diamond_left_dist_sup:
"|x ⊔ y>z = |x>z ⊔ |y>z"
by (simp add: mult_right_dist_sup n_dist_sup ndiamond_def)
text ‹Theorem 23.2›
lemma diamond_right_dist_sup:
"|x>(y ⊔ z) = |x>y ⊔ |x>z"
by (simp add: mult_left_dist_sup n_dist_sup ndiamond_def semiring.distrib_right)
text ‹Theorem 23.3›
lemma diamond_associative:
"|x * y>z = |x>(y * z)"
by (simp add: ndiamond_def mult_assoc)
text ‹Theorem 23.3›
lemma diamond_left_mult:
"|x * y>z = |x>|y>z"
using n_mult_ni ndiamond_def ni_def mult_assoc by auto
lemma diamond_right_mult:
"|x>(y * z) = |x>|y>z"
using diamond_associative diamond_left_mult by force
lemma diamond_n_export:
"|n(x) * y>z = n(x) * |y>z"
by (simp add: n_export ndiamond_def mult_assoc)
lemma diamond_diamond_export:
"||x>y>z = |x>y * |z>1"
using diamond_n_y ndiamond_def by auto
lemma diamond_left_isotone:
"x ≤ y ⟹ |x>z ≤ |y>z"
by (metis diamond_left_dist_sup le_iff_sup)
lemma diamond_right_isotone:
"y ≤ z ⟹ |x>y ≤ |x>z"
by (metis diamond_right_dist_sup le_iff_sup)
lemma diamond_isotone:
"w ≤ y ⟹ x ≤ z ⟹ |w>x ≤ |y>z"
by (meson diamond_left_isotone diamond_right_isotone order_trans)
definition ndiamond_L :: "'a ⇒ 'a ⇒ 'a" (‹∥ _ » _› [50,90] 95)
where "∥x»y ≡ n(x * y) * L"
lemma ndiamond_to_L:
"∥x»y = |x>n(y) * L"
by (simp add: diamond_x_n ndiamond_L_def)
lemma ndiamond_from_L:
"|x>y = n(∥x»(y * L))"
by (simp add: n_n_L ndiamond_def mult_assoc ndiamond_L_def)
lemma diamond_L_ni:
"∥x»y = ni(x * y)"
by (simp add: ni_def ndiamond_L_def)
lemma diamond_L_associative:
"∥x * y»z = ∥x»(y * z)"
by (simp add: diamond_L_ni mult_assoc)
lemma diamond_L_left_mult:
"∥x * y»z = ∥x»∥y»z"
using diamond_L_associative diamond_L_ni ni_mult by auto
lemma diamond_L_right_mult:
"∥x»(y * z) = ∥x»∥y»z"
using diamond_L_associative diamond_L_left_mult by auto
lemma diamond_L_left_dist_sup:
"∥x ⊔ y»z = ∥x»z ⊔ ∥y»z"
by (simp add: diamond_L_ni mult_right_dist_sup ni_dist_sup)
lemma diamond_L_x_ni:
"∥x»ni(y) = ni(x * y)"
using n_mult_ni ni_def ndiamond_L_def by auto
lemma diamond_L_left_isotone:
"x ≤ y ⟹ ∥x»z ≤ ∥y»z"
using mult_left_isotone ni_def ni_isotone ndiamond_L_def by auto
lemma diamond_L_right_isotone:
"y ≤ z ⟹ ∥x»y ≤ ∥x»z"
using mult_right_isotone ni_def ni_isotone ndiamond_L_def by auto
lemma diamond_L_isotone:
"w ≤ y ⟹ x ≤ z ⟹ ∥w»x ≤ ∥y»z"
using diamond_L_ni mult_isotone ni_isotone by force
end
class n_box_semiring = n_diamond_semiring + an_semiring + box +
assumes nbox_def: "|x]y = an(x * an(y * L) * L)"
begin
text ‹Theorem 23.8›
lemma box_diamond:
"|x]y = an( |x>an(y * L) * L)"
by (simp add: an_n_L nbox_def ndiamond_def)
text ‹Theorem 23.4›
lemma diamond_box:
"|x>y = an( |x]an(y * L) * L)"
using n_an_def n_mult nbox_def ndiamond_def mult_assoc by force
lemma box_x_bot:
"|x]bot = an(x * L)"
by (simp add: an_bot nbox_def)
lemma box_x_1:
"|x]1 = an(x)"
using an_L an_mult_an nbox_def mult_assoc by auto
lemma box_x_L:
"|x]L = an(x)"
using box_x_1 L_left_zero nbox_def by auto
lemma box_x_top:
"|x]top = an(x)"
by (metis box_diamond box_x_1 box_x_bot diamond_top_y)
lemma box_x_n:
"|x]n(y) = an(x * an(y) * L)"
by (simp add: an_n_L nbox_def)
lemma box_x_an:
"|x]an(y) = an(x * y)"
using an_mult n_an_def nbox_def by auto
lemma box_bot_y:
"|bot]y = 1"
by (simp add: an_bot nbox_def)
lemma box_1_y:
"|1]y = n(y * L)"
by (simp add: n_an_def nbox_def)
lemma box_1_n:
"|1]n(y) = n(y)"
using box_1_y diamond_1_n diamond_1_y by auto
lemma box_1_an:
"|1]an(y) = an(y)"
by (simp add: box_x_an)
lemma box_L_y:
"|L]y = bot"
by (simp add: L_left_zero an_L nbox_def)
lemma box_top_y:
"|top]y = bot"
by (simp add: box_diamond an_L diamond_top_y)
lemma box_n_y:
"|n(x)]y = an(x) ⊔ n(y * L)"
using an_export_n n_an_def nbox_def mult_assoc by auto
lemma box_an_y:
"|an(x)]y = n(x) ⊔ n(y * L)"
by (metis an_n_def box_n_y n_an_def)
lemma box_n_bot:
"|n(x)]bot = an(x)"
by (simp add: box_x_bot an_n_L)
lemma box_an_bot:
"|an(x)]bot = n(x)"
by (simp add: box_x_bot n_an_def)
lemma box_n_1:
"|n(x)]1 = 1"
using box_x_1 ani_an_L ani_n by auto
lemma box_an_1:
"|an(x)]1 = 1"
using box_x_1 ani_an ani_an_L by fastforce
lemma box_n_n:
"|n(x)]n(y) = an(x) ⊔ n(y)"
using box_1_n box_1_y box_n_y by auto
lemma box_an_n:
"|an(x)]n(y) = n(x) ⊔ n(y)"
using box_x_n an_dist_sup n_an_def n_dist_sup by auto
lemma box_n_an:
"|n(x)]an(y) = an(x) ⊔ an(y)"
by (simp add: box_x_an an_export_n)
lemma box_an_an:
"|an(x)]an(y) = n(x) ⊔ an(y)"
by (simp add: box_x_an an_export)
lemma box_n_n_same:
"|n(x)]n(x) = 1"
by (simp add: box_n_n an_complement)
lemma box_an_an_same:
"|an(x)]an(x) = 1"
using box_an_bot an_bot an_complement_bot nbox_def by auto
text ‹Theorem 23.5›
lemma box_left_dist_sup:
"|x ⊔ y]z = |x]z * |y]z"
using an_dist_sup nbox_def semiring.distrib_right by auto
lemma box_right_dist_sup:
"|x](y ⊔ z) = an(x * an(y * L) * an(z * L) * L)"
by (simp add: an_dist_sup mult_right_dist_sup nbox_def mult_assoc)
lemma box_associative:
"|x * y]z = an(x * y * an(z * L) * L)"
by (simp add: nbox_def)
text ‹Theorem 23.7›
lemma box_left_mult:
"|x * y]z = |x]|y]z"
using box_x_an nbox_def mult_assoc by auto
lemma box_right_mult:
"|x](y * z) = an(x * an(y * z * L) * L)"
by (simp add: nbox_def)
text ‹Theorem 23.6›
lemma box_right_mult_n_n:
"|x](n(y) * n(z)) = |x]n(y) * |x]n(z)"
by (smt an_dist_sup an_export_n an_n_L mult_assoc mult_left_dist_sup mult_right_dist_sup nbox_def)
lemma box_right_mult_an_n:
"|x](an(y) * n(z)) = |x]an(y) * |x]n(z)"
by (metis an_n_def box_right_mult_n_n)
lemma box_right_mult_n_an:
"|x](n(y) * an(z)) = |x]n(y) * |x]an(z)"
by (simp add: box_right_mult_an_n box_x_an box_x_n an_mult_commutative n_an_mult_commutative)
lemma box_right_mult_an_an:
"|x](an(y) * an(z)) = |x]an(y) * |x]an(z)"
by (metis an_dist_sup box_x_an mult_left_dist_sup)
lemma box_n_export:
"|n(x) * y]z = an(x) ⊔ |y]z"
using box_left_mult box_n_an nbox_def by auto
lemma box_an_export:
"|an(x) * y]z = n(x) ⊔ |y]z"
using box_an_an box_left_mult nbox_def by auto
lemma box_left_antitone:
"y ≤ x ⟹ |x]z ≤ |y]z"
by (smt an_mult_commutative an_order box_diamond box_left_dist_sup le_iff_sup)
lemma box_right_isotone:
"y ≤ z ⟹ |x]y ≤ |x]z"
by (metis an_antitone mult_left_isotone mult_right_isotone nbox_def)
lemma box_antitone_isotone:
"y ≤ w ⟹ x ≤ z ⟹ |w]x ≤ |y]z"
by (meson box_left_antitone box_right_isotone order.trans)
definition nbox_L :: "'a ⇒ 'a ⇒ 'a" (‹∥ _ ⟧ _› [50,90] 95)
where "∥x⟧y ≡ an(x * an(y) * L) * L"
lemma nbox_to_L:
"∥x⟧y = |x]n(y) * L"
by (simp add: box_x_n nbox_L_def)
lemma nbox_from_L:
"|x]y = n(∥x⟧(y * L))"
using an_n_def nbox_def nbox_L_def by auto
lemma diamond_x_an:
"|x>an(y) = n(x * an(y) * L)"
by (simp add: ndiamond_def)
lemma diamond_1_an:
"|1>an(y) = an(y)"
using box_1_an box_1_y diamond_1_y by auto
lemma diamond_an_y:
"|an(x)>y = an(x) * n(y * L)"
by (simp add: n_export_an ndiamond_def mult_assoc)
lemma diamond_an_bot:
"|an(x)>bot = bot"
by (simp add: an_mult_right_zero n_bot ndiamond_def)
lemma diamond_an_1:
"|an(x)>1 = an(x)"
using an_n_def diamond_x_1 by auto
lemma diamond_an_n:
"|an(x)>n(y) = an(x) * n(y)"
by (simp add: diamond_x_n n_export_an)
lemma diamond_n_an:
"|n(x)>an(y) = n(x) * an(y)"
using an_n_def diamond_n_y by auto
lemma diamond_an_an:
"|an(x)>an(y) = an(x) * an(y)"
using diamond_an_y an_n_def by auto
lemma diamond_an_an_same:
"|an(x)>an(x) = an(x)"
by (simp add: diamond_an_an an_mult_idempotent)
lemma diamond_an_export:
"|an(x) * y>z = an(x) * |y>z"
using diamond_an_an diamond_box diamond_left_mult by auto
lemma box_ani:
"|x]y = an(x * ani(y * L))"
by (simp add: ani_def nbox_def mult_assoc)
lemma box_x_n_ani:
"|x]n(y) = an(x * ani(y))"
by (simp add: box_x_n ani_def mult_assoc)
lemma box_L_ani:
"∥x⟧y = ani(x * ani(y))"
using box_x_n_ani ani_def nbox_to_L by auto
lemma box_L_left_mult:
"∥x * y⟧z = ∥x⟧∥y⟧z"
using an_mult n_an_def mult_assoc nbox_L_def by auto
lemma diamond_x_an_ani:
"|x>an(y) = n(x * ani(y))"
by (simp add: ani_def ndiamond_def mult_assoc)
lemma box_L_left_antitone:
"y ≤ x ⟹ ∥x⟧z ≤ ∥y⟧z"
by (simp add: box_L_ani ani_antitone mult_left_isotone)
lemma box_L_right_isotone:
"y ≤ z ⟹ ∥x⟧y ≤ ∥x⟧z"
using ani_antitone ani_def mult_right_isotone mult_assoc nbox_L_def by auto
lemma box_L_antitone_isotone:
"y ≤ w ⟹ x ≤ z ⟹ ∥w⟧x ≤ ∥y⟧z"
using ani_antitone ani_def mult_isotone mult_assoc nbox_L_def by force
end
class n_box_omega_algebra = n_box_semiring + an_omega_algebra
begin
lemma diamond_omega:
"|x⇧ω>y = |x⇧ω>z"
by (simp add: n_omega_mult ndiamond_def mult_assoc)
lemma box_omega:
"|x⇧ω]y = |x⇧ω]z"
by (metis box_diamond diamond_omega)
lemma an_box_omega_induct:
"|x]an(y) * n(z * L) ≤ an(y) ⟹ |x⇧ω ⊔ x⇧⋆]z ≤ an(y)"
by (smt an_dist_sup an_omega_induct an_omega_mult box_left_dist_sup box_x_an mult_assoc n_an_def nbox_def)
lemma n_box_omega_induct:
"|x]n(y) * n(z * L) ≤ n(y) ⟹ |x⇧ω ⊔ x⇧⋆]z ≤ n(y)"
by (simp add: an_box_omega_induct n_an_def)
lemma an_box_omega_induct_an:
"|x]an(y) * an(z) ≤ an(y) ⟹ |x⇧ω ⊔ x⇧⋆]an(z) ≤ an(y)"
using an_box_omega_induct an_n_def by auto
text ‹Theorem 23.13›
lemma n_box_omega_induct_n:
"|x]n(y) * n(z) ≤ n(y) ⟹ |x⇧ω ⊔ x⇧⋆]n(z) ≤ n(y)"
using an_box_omega_induct_an n_an_def by force
lemma n_diamond_omega_induct:
"n(y) ≤ |x>n(y) ⊔ n(z * L) ⟹ n(y) ≤ |x⇧ω ⊔ x⇧⋆>z"
using diamond_x_n mult_right_dist_sup n_dist_sup n_omega_induct n_omega_mult ndiamond_def mult_assoc by force
lemma an_diamond_omega_induct:
"an(y) ≤ |x>an(y) ⊔ n(z * L) ⟹ an(y) ≤ |x⇧ω ⊔ x⇧⋆>z"
by (metis n_diamond_omega_induct an_n_def)
text ‹Theorem 23.9›
lemma n_diamond_omega_induct_n:
"n(y) ≤ |x>n(y) ⊔ n(z) ⟹ n(y) ≤ |x⇧ω ⊔ x⇧⋆>n(z)"
using box_1_n box_1_y n_diamond_omega_induct by auto
lemma an_diamond_omega_induct_an:
"an(y) ≤ |x>an(y) ⊔ an(z) ⟹ an(y) ≤ |x⇧ω ⊔ x⇧⋆>an(z)"
using an_diamond_omega_induct an_n_def by auto
lemma box_segerberg_an:
"|x⇧ω ⊔ x⇧⋆]an(y) = an(y) * |x⇧ω ⊔ x⇧⋆](n(y) ⊔ |x]an(y))"
proof (rule order.antisym)
have "|x⇧ω ⊔ x⇧⋆]an(y) ≤ |x⇧ω ⊔ x⇧⋆]|x]an(y)"
by (smt box_left_dist_sup box_left_mult box_omega sup_right_isotone box_left_antitone mult_right_dist_sup star.right_plus_below_circ)
hence "|x⇧ω ⊔ x⇧⋆]an(y) ≤ |x⇧ω ⊔ x⇧⋆](n(y) ⊔ |x]an(y))"
using box_right_isotone order_lesseq_imp sup.cobounded2 by blast
thus"|x⇧ω ⊔ x⇧⋆]an(y) ≤ an(y) * |x⇧ω ⊔ x⇧⋆](n(y) ⊔ |x]an(y))"
by (metis le_sup_iff box_1_an box_left_antitone order_refl star_left_unfold_equal an_mult_least_upper_bound nbox_def)
next
have "an(y) * |x](n(y) ⊔ |x⇧ω ⊔ x⇧⋆]an(y)) * (n(y) ⊔ |x]an(y)) = |x]( |x⇧ω ⊔ x⇧⋆]an(y) * an(y)) * an(y)"
by (smt sup_bot_left an_export an_mult_commutative box_right_mult_an_an mult_assoc mult_right_dist_sup n_complement_bot nbox_def)
hence 1: "an(y) * |x](n(y) ⊔ |x⇧ω ⊔ x⇧⋆]an(y)) * (n(y) ⊔ |x]an(y)) ≤ n(y) ⊔ |x⇧ω ⊔ x⇧⋆]an(y)"
by (smt sup_assoc sup_commute sup_ge2 box_1_an box_left_dist_sup box_left_mult mult_left_dist_sup omega_unfold star_left_unfold_equal star.circ_plus_one)
have "n(y) * |x](n(y) ⊔ |x⇧ω ⊔ x⇧⋆]an(y)) * (n(y) ⊔ |x]an(y)) ≤ n(y) ⊔ |x⇧ω ⊔ x⇧⋆]an(y)"
by (smt sup_ge1 an_n_def mult_left_isotone n_an_mult_left_lower_bound n_mult_left_absorb_sup nbox_def order_trans)
thus "an(y) * |x⇧ω ⊔ x⇧⋆](n(y) ⊔ |x]an(y)) ≤ |x⇧ω ⊔ x⇧⋆]an(y)"
using 1 by (smt an_case_split_left an_shunting_an mult_assoc n_box_omega_induct_n n_dist_sup nbox_def nbox_from_L)
qed
text ‹Theorem 23.16›
lemma box_segerberg_n:
"|x⇧ω ⊔ x⇧⋆]n(y) = n(y) * |x⇧ω ⊔ x⇧⋆](an(y) ⊔ |x]n(y))"
using box_segerberg_an an_n_def n_an_def by force
lemma diamond_segerberg_an:
"|x⇧ω ⊔ x⇧⋆>an(y) = an(y) ⊔ |x⇧ω ⊔ x⇧⋆>(n(y) * |x>an(y))"
by (smt an_export an_n_L box_diamond box_segerberg_an diamond_box mult_assoc n_an_def)
text ‹Theorem 23.12›
lemma diamond_segerberg_n:
"|x⇧ω ⊔ x⇧⋆>n(y) = n(y) ⊔ |x⇧ω ⊔ x⇧⋆>(an(y) * |x>n(y))"
using diamond_segerberg_an an_n_L n_an_def by auto
text ‹Theorem 23.11›
lemma diamond_star_unfold_n:
"|x⇧⋆>n(y) = n(y) ⊔ |an(y) * x>|x⇧⋆>n(y)"
proof -
have "|x⇧⋆>n(y) = n(y) ⊔ n(y) * |x * x⇧⋆>n(y) ⊔ |an(y) * x * x⇧⋆>n(y)"
by (smt sup_assoc sup_commute sup_bot_right an_complement an_complement_bot diamond_an_n diamond_left_dist_sup diamond_n_export diamond_n_n_same mult_assoc mult_left_one mult_right_dist_sup star_left_unfold_equal)
thus ?thesis
by (metis diamond_left_mult diamond_x_n n_sup_left_absorb_mult)
qed
lemma diamond_star_unfold_an:
"|x⇧⋆>an(y) = an(y) ⊔ |n(y) * x>|x⇧⋆>an(y)"
by (metis an_n_def diamond_star_unfold_n n_an_def)
text ‹Theorem 23.15›
lemma box_star_unfold_n:
"|x⇧⋆]n(y) = n(y) * |n(y) * x]|x⇧⋆]n(y)"
by (smt an_export an_n_L box_diamond diamond_box diamond_star_unfold_an n_an_def n_export)
lemma box_star_unfold_an:
"|x⇧⋆]an(y) = an(y) * |an(y) * x]|x⇧⋆]an(y)"
by (metis an_n_def box_star_unfold_n)
text ‹Theorem 23.10›
lemma diamond_omega_unfold_n:
"|x⇧ω ⊔ x⇧⋆>n(y) = n(y) ⊔ |an(y) * x>|x⇧ω ⊔ x⇧⋆>n(y)"
by (smt sup_assoc sup_commute diamond_an_export diamond_left_dist_sup diamond_right_dist_sup diamond_star_unfold_n diamond_x_n n_omega_mult n_plus_complement_intro_n omega_unfold)
lemma diamond_omega_unfold_an:
"|x⇧ω ⊔ x⇧⋆>an(y) = an(y) ⊔ |n(y) * x>|x⇧ω ⊔ x⇧⋆>an(y)"
by (metis an_n_def diamond_omega_unfold_n n_an_def)
text ‹Theorem 23.14›
lemma box_omega_unfold_n:
"|x⇧ω ⊔ x⇧⋆]n(y) = n(y) * |n(y) * x]|x⇧ω ⊔ x⇧⋆]n(y)"
by (smt an_export an_n_L box_diamond diamond_box diamond_omega_unfold_an n_an_def n_export)
lemma box_omega_unfold_an:
"|x⇧ω ⊔ x⇧⋆]an(y) = an(y) * |an(y) * x]|x⇧ω ⊔ x⇧⋆]an(y)"
by (metis an_n_def box_omega_unfold_n)
lemma box_cut_iteration_an:
"|x⇧ω ⊔ x⇧⋆]an(y) = |(an(y) * x)⇧ω ⊔ (an(y) * x)⇧⋆]an(y)"
apply (rule order.antisym)
apply (meson semiring.add_mono an_case_split_left box_left_antitone omega_isotone order_refl star.circ_isotone)
by (smt (z3) an_box_omega_induct_an an_mult_commutative box_omega_unfold_an nbox_def order_refl)
lemma box_cut_iteration_n:
"|x⇧ω ⊔ x⇧⋆]n(y) = |(n(y) * x)⇧ω ⊔ (n(y) * x)⇧⋆]n(y)"
using box_cut_iteration_an n_an_def by auto
lemma diamond_cut_iteration_an:
"|x⇧ω ⊔ x⇧⋆>an(y) = |(n(y) * x)⇧ω ⊔ (n(y) * x)⇧⋆>an(y)"
using box_cut_iteration_n diamond_box n_an_def by auto
lemma diamond_cut_iteration_n:
"|x⇧ω ⊔ x⇧⋆>n(y) = |(an(y) * x)⇧ω ⊔ (an(y) * x)⇧⋆>n(y)"
using box_cut_iteration_an an_n_L diamond_box by auto
lemma ni_diamond_omega_induct:
"ni(y) ≤ ∥x»ni(y) ⊔ ni(z) ⟹ ni(y) ≤ ∥x⇧ω ⊔ x⇧⋆»z"
by (metis diamond_L_left_dist_sup diamond_L_x_ni diamond_L_ni ni_dist_sup ni_omega_induct ni_omega_mult)
lemma ani_diamond_omega_induct:
"ani(y) ≤ ∥x»ani(y) ⊔ ni(z) ⟹ ani(y) ≤ ∥x⇧ω ⊔ x⇧⋆»z"
by (metis ni_ani ni_diamond_omega_induct)
lemma n_diamond_omega_L:
"|n(x⇧ω) * L>y = |x⇧ω>y"
using L_left_zero mult_1_right n_L n_export n_omega_mult ndiamond_def mult_assoc by auto
lemma n_diamond_loop:
"|x⇧Ω>y = |x⇧ω ⊔ x⇧⋆>y"
by (metis Omega_def diamond_left_dist_sup n_diamond_omega_L)
text ‹Theorem 24.1›
lemma cut_iteration_loop:
"|x⇧Ω>n(y) = |(an(y) * x)⇧Ω>n(y)"
using diamond_cut_iteration_n n_diamond_loop by auto
lemma cut_iteration_while_loop:
"|x⇧Ω>n(y) = |(an(y) * x)⇧Ω * n(y)>n(y)"
using cut_iteration_loop diamond_left_mult diamond_n_n_same by auto
text ‹Theorem 24.1›
lemma cut_iteration_while_loop_2:
"|x⇧Ω>n(y) = |an(y) ⋆ x>n(y)"
by (metis cut_iteration_while_loop an_uminus n_an_def while_Omega_def)
lemma modal_while:
assumes "-q * -p * L ≤ x * -p * L ∧ -p ≤ -q ⊔ -r"
shows "-p ≤ |n((-q * x)⇧ω) * L ⊔ (-q * x)⇧⋆ * --q>(-r)"
proof -
have 1: "--q * -p ≤ |-q * x>(-p) ⊔ --q * -r"
using assms mult_right_isotone sup.coboundedI2 tests_dual.sup_complement_intro by auto
have "-q * -p = n(-q * -q * -p * L)"
using an_uminus n_export_an mult_assoc mult_1_right n_L tests_dual.sup_idempotent by auto
also have "... ≤ n(-q * x * -p * L)"
by (metis assms n_isotone mult_right_isotone mult_assoc)
also have "... ≤ |-q * x>(-p) ⊔ --q * -r"
by (simp add: ndiamond_def)
finally have "-p ≤ |-q * x>(-p) ⊔ --q * -r"
using 1 by (smt sup_assoc le_iff_sup tests_dual.inf_cases sub_comm)
thus ?thesis
by (smt L_left_zero an_diamond_omega_induct_an an_uminus diamond_left_dist_sup mult_assoc n_n_L n_omega_mult ndiamond_def sub_mult_closed)
qed
lemma modal_while_loop:
"-q * -p * L ≤ x * -p * L ∧ -p ≤ -q ⊔ -r ⟹ -p ≤ |(-q * x)⇧Ω * --q>(-r)"
by (metis L_left_zero Omega_def modal_while mult_assoc mult_right_dist_sup)
text ‹Theorem 24.2›
lemma modal_while_loop_2:
"-q * -p * L ≤ x * -p * L ∧ -p ≤ -q ⊔ -r ⟹ -p ≤ |-q ⋆ x>(-r)"
by (simp add: while_Omega_def modal_while_loop)
lemma modal_while_2:
assumes "-p * L ≤ x * -p * L"
shows "-p ≤ |n((-q * x)⇧ω) * L ⊔ (-q * x)⇧⋆ * --q>(--q)"
proof -
have "-p ≤ |-q * x>(-p) ⊔ --q"
by (smt (verit, del_insts) assms an_uminus tests_dual.double_negation n_an_def n_isotone ndiamond_def diamond_an_export sup_assoc sup_commute le_iff_sup tests_dual.inf_complement_intro)
thus ?thesis
by (smt L_left_zero an_diamond_omega_induct_an an_uminus diamond_left_dist_sup mult_assoc tests_dual.sup_idempotent n_n_L n_omega_mult ndiamond_def)
qed
end
class n_modal_omega_algebra = n_box_omega_algebra +
assumes n_star_induct: "n(x * y) ≤ n(y) ⟶ n(x⇧⋆ * y) ≤ n(y)"
begin
lemma n_star_induct_sup:
"n(z ⊔ x * y) ≤ n(y) ⟹ n(x⇧⋆ * z) ≤ n(y)"
by (metis an_dist_sup an_mult_least_upper_bound an_n_order n_mult_right_upper_bound n_star_induct star_L_split)
lemma n_star_induct_star:
"n(x * y) ≤ n(y) ⟹ n(x⇧⋆) ≤ n(y)"
using n_star_induct n_star_mult by auto
lemma n_star_induct_iff:
"n(x * y) ≤ n(y) ⟷ n(x⇧⋆ * y) ≤ n(y)"
by (metis mult_left_isotone n_isotone n_star_induct order_trans star.circ_increasing)
lemma n_star_bot:
"n(x) = bot ⟷ n(x⇧⋆) = bot"
by (metis sup_bot_right le_iff_sup mult_1_right n_one n_star_induct_iff)
lemma n_diamond_star_induct:
"|x>n(y) ≤ n(y) ⟹ |x⇧⋆>n(y) ≤ n(y)"
by (simp add: diamond_x_n n_star_induct)
lemma n_diamond_star_induct_sup:
"|x>n(y) ⊔ n(z) ≤ n(y) ⟹ |x⇧⋆>n(z) ≤ n(y)"
by (simp add: diamond_x_n n_dist_sup n_star_induct_sup)
lemma n_diamond_star_induct_iff:
"|x>n(y) ≤ n(y) ⟷ |x⇧⋆>n(y) ≤ n(y)"
using diamond_x_n n_star_induct_iff by auto
lemma an_star_induct:
"an(y) ≤ an(x * y) ⟹ an(y) ≤ an(x⇧⋆ * y)"
using an_n_order n_star_induct by auto
lemma an_star_induct_sup:
"an(y) ≤ an(z ⊔ x * y) ⟹ an(y) ≤ an(x⇧⋆ * z)"
using an_n_order n_star_induct_sup by auto
lemma an_star_induct_star:
"an(y) ≤ an(x * y) ⟹ an(y) ≤ an(x⇧⋆)"
by (simp add: an_n_order n_star_induct_star)
lemma an_star_induct_iff:
"an(y) ≤ an(x * y) ⟷ an(y) ≤ an(x⇧⋆ * y)"
using an_n_order n_star_induct_iff by auto
lemma an_star_one:
"an(x) = 1 ⟷ an(x⇧⋆) = 1"
by (metis an_n_equal an_bot n_star_bot n_bot)
lemma an_box_star_induct:
"an(y) ≤ |x]an(y) ⟹ an(y) ≤ |x⇧⋆]an(y)"
by (simp add: an_star_induct box_x_an)
lemma an_box_star_induct_sup:
"an(y) ≤ |x]an(y) * an(z) ⟹ an(y) ≤ |x⇧⋆]an(z)"
by (simp add: an_star_induct_sup an_dist_sup an_mult_commutative box_x_an)
lemma an_box_star_induct_iff:
"an(y) ≤ |x]an(y) ⟷ an(y) ≤ |x⇧⋆]an(y)"
using an_star_induct_iff box_x_an by auto
lemma box_star_segerberg_an:
"|x⇧⋆]an(y) = an(y) * |x⇧⋆](n(y) ⊔ |x]an(y))"
proof (rule order.antisym)
show "|x⇧⋆]an(y) ≤ an(y) * |x⇧⋆](n(y) ⊔ |x]an(y))"
by (smt (verit) sup_ge2 box_1_an box_left_dist_sup box_left_mult box_right_isotone mult_right_isotone star.circ_right_unfold)
next
have "an(y) * |x⇧⋆](n(y) ⊔ |x]an(y)) ≤ an(y) * |x]an(y)"
by (metis sup_bot_left an_complement_bot box_an_an box_left_antitone box_x_an mult_left_dist_sup mult_left_one mult_right_isotone star.circ_reflexive)
thus "an(y) * |x⇧⋆](n(y) ⊔ |x]an(y)) ≤ |x⇧⋆]an(y)"
by (smt an_box_star_induct_sup an_case_split_left an_dist_sup an_mult_least_upper_bound box_left_antitone box_left_mult box_right_mult_an_an star.left_plus_below_circ nbox_def)
qed
lemma box_star_segerberg_n:
"|x⇧⋆]n(y) = n(y) * |x⇧⋆](an(y) ⊔ |x]n(y))"
using box_star_segerberg_an an_n_def n_an_def by auto
lemma diamond_segerberg_an:
"|x⇧⋆>an(y) = an(y) ⊔ |x⇧⋆>(n(y) * |x>an(y))"
by (smt an_export an_n_L box_diamond box_star_segerberg_an diamond_box mult_assoc n_an_def)
lemma diamond_star_segerberg_n:
"|x⇧⋆>n(y) = n(y) ⊔ |x⇧⋆>(an(y) * |x>n(y))"
using an_n_def diamond_segerberg_an n_an_def by auto
lemma box_cut_star_iteration_an:
"|x⇧⋆]an(y) = |(an(y) * x)⇧⋆]an(y)"
by (smt an_box_star_induct_sup an_mult_commutative an_mult_complement_intro_an order.antisym box_an_export box_star_unfold_an nbox_def order_refl)
lemma box_cut_star_iteration_n:
"|x⇧⋆]n(y) = |(n(y) * x)⇧⋆]n(y)"
using box_cut_star_iteration_an n_an_def by auto
lemma diamond_cut_star_iteration_an:
"|x⇧⋆>an(y) = |(n(y) * x)⇧⋆>an(y)"
using box_cut_star_iteration_an diamond_box n_an_def by auto
lemma diamond_cut_star_iteration_n:
"|x⇧⋆>n(y) = |(an(y) * x)⇧⋆>n(y)"
using box_cut_star_iteration_an an_n_L diamond_box by auto
lemma ni_star_induct:
"ni(x * y) ≤ ni(y) ⟹ ni(x⇧⋆ * y) ≤ ni(y)"
using n_star_induct ni_n_order by auto
lemma ni_star_induct_sup:
"ni(z ⊔ x * y) ≤ ni(y) ⟹ ni(x⇧⋆ * z) ≤ ni(y)"
by (simp add: ni_n_order n_star_induct_sup)
lemma ni_star_induct_star:
"ni(x * y) ≤ ni(y) ⟹ ni(x⇧⋆) ≤ ni(y)"
using ni_n_order n_star_induct_star by auto
lemma ni_star_induct_iff:
"ni(x * y) ≤ ni(y) ⟷ ni(x⇧⋆ * y) ≤ ni(y)"
using ni_n_order n_star_induct_iff by auto
lemma ni_star_bot:
"ni(x) = bot ⟷ ni(x⇧⋆) = bot"
using ni_n_bot n_star_bot by auto
lemma ni_diamond_star_induct:
"∥x»ni(y) ≤ ni(y) ⟹ ∥x⇧⋆»ni(y) ≤ ni(y)"
by (simp add: diamond_L_x_ni ni_star_induct)
lemma ni_diamond_star_induct_sup:
"∥x»ni(y) ⊔ ni(z) ≤ ni(y) ⟹ ∥x⇧⋆»ni(z) ≤ ni(y)"
by (simp add: diamond_L_x_ni ni_dist_sup ni_star_induct_sup)
lemma ni_diamond_star_induct_iff:
"∥x»ni(y) ≤ ni(y) ⟷ ∥x⇧⋆»ni(y) ≤ ni(y)"
using diamond_L_x_ni ni_star_induct_iff by auto
lemma ani_star_induct:
"ani(y) ≤ ani(x * y) ⟹ ani(y) ≤ ani(x⇧⋆ * y)"
using an_star_induct ani_an_order by blast
lemma ani_star_induct_sup:
"ani(y) ≤ ani(z ⊔ x * y) ⟹ ani(y) ≤ ani(x⇧⋆ * z)"
by (simp add: an_star_induct_sup ani_an_order)
lemma ani_star_induct_star:
"ani(y) ≤ ani(x * y) ⟹ ani(y) ≤ ani(x⇧⋆)"
using an_star_induct_star ani_an_order by auto
lemma ani_star_induct_iff:
"ani(y) ≤ ani(x * y) ⟷ ani(y) ≤ ani(x⇧⋆ * y)"
using an_star_induct_iff ani_an_order by auto
lemma ani_star_L:
"ani(x) = L ⟷ ani(x⇧⋆) = L"
using an_star_one ani_an_L by auto
lemma ani_box_star_induct:
"ani(y) ≤ ∥x⟧ani(y) ⟹ ani(y) ≤ ∥x⇧⋆⟧ani(y)"
by (metis an_ani ani_def ani_star_induct_iff n_ani box_L_ani)
lemma ani_box_star_induct_iff:
"ani(y) ≤ ∥x⟧ani(y) ⟷ ani(y) ≤ ∥x⇧⋆⟧ani(y)"
using ani_box_star_induct box_L_left_antitone order_lesseq_imp star.circ_increasing by blast
lemma ani_box_star_induct_sup:
"ani(y) ≤ ∥x⟧ani(y) ⟹ ani(y) ≤ ani(z) ⟹ ani(y) ≤ ∥x⇧⋆⟧ani(z)"
by (meson ani_box_star_induct_iff box_L_right_isotone order_trans)
end
end