(* Title: Capped Omega Algebras Author: Walter Guttmann Maintainer: Walter Guttmann <walter.guttmann at canterbury.ac.nz> *) section ‹Capped Omega Algebras› theory Capped_Omega_Algebras imports Omega_Algebras begin class capped_omega = fixes capped_omega :: "'a ⇒ 'a ⇒ 'a" (‹_⇧ω⇩_› [100,100] 100) class capped_omega_algebra = bounded_left_zero_kleene_algebra + bounded_distrib_lattice + capped_omega + assumes capped_omega_unfold: "y⇧ω⇩v = y * y⇧ω⇩v ⊓ v" assumes capped_omega_induct: "x ≤ (y * x ⊔ z) ⊓ v ⟶ x ≤ y⇧ω⇩v ⊔ y⇧⋆ * z" text ‹AACP Theorem 6.1› notation top (‹⊤›)