Theory DefAss

(*  Title:       CoreC++
    Author:      Tobias Nipkow, Daniel Wasserrab
    Maintainer:  Daniel Wasserrab <wasserra at fmi.uni-passau.de>
*)

section ‹Definite assignment›

theory DefAss
imports BigStep
begin


subsection ‹Hypersets›

type_synonym hyperset = "vname set option"

definition hyperUn :: "hyperset  hyperset  hyperset"   (infixl  65) where
  "A  B    case A of None  None
                 | A  (case B of None  None | B  A  B)"

definition hyperInt :: "hyperset  hyperset  hyperset"   (infixl  70) where
  "A  B    case A of None  B
                 | A  (case B of None  A | B  A  B)"

definition hyperDiff1 :: "hyperset  vname  hyperset"   (infixl  65) where
  "A  a    case A of None  None | A  A - {a}"

definition hyper_isin :: "vname  hyperset  bool"   (infix ∈∈ 50) where
"a ∈∈ A    case A of None  True | A  a  A"

definition hyper_subset :: "hyperset  hyperset  bool"   (infix  50) where
  "A  B    case B of None  True
                 | B  (case A of None  False | A  A  B)"

lemmas hyperset_defs =
 hyperUn_def hyperInt_def hyperDiff1_def hyper_isin_def hyper_subset_def

lemma [simp]: "{}  A = A    A  {} = A"
by(simp add:hyperset_defs)

lemma [simp]: "A  B = A  B  A  a = A - {a}"
by(simp add:hyperset_defs)

lemma [simp]: "None  A = None  A  None = None"
by(simp add:hyperset_defs)

lemma [simp]: "a ∈∈ None  None  a = None"
by(simp add:hyperset_defs)

lemma hyperUn_assoc: "(A  B)  C = A  (B  C)"
by(simp add:hyperset_defs Un_assoc)

lemma hyper_insert_comm: "A  {a} = {a}  A  A  ({a}  B) = {a}  (A  B)"
by(simp add:hyperset_defs)


subsection ‹Definite assignment›

primrec 𝒜 :: "expr  hyperset" and 𝒜s :: "expr list  hyperset" where
"𝒜 (new C) = {}" |
"𝒜 (Cast C e) = 𝒜 e" |
"𝒜 (Ce) = 𝒜 e" |
"𝒜 (Val v) = {}" |
"𝒜 (e1 «bop» e2) = 𝒜 e1  𝒜 e2" |
"𝒜 (Var V) = {}" |
"𝒜 (LAss V e) = {V}  𝒜 e" |
"𝒜 (eF{Cs}) = 𝒜 e" |
"𝒜 (e1F{Cs}:=e2) = 𝒜 e1  𝒜 e2" |
"𝒜 (Call e Copt M es) = 𝒜 e  𝒜s es" |
"𝒜 ({V:T; e}) = 𝒜 e  V" |
"𝒜 (e1;;e2) = 𝒜 e1  𝒜 e2" |
"𝒜 (if (e) e1 else e2) =  𝒜 e  (𝒜 e1  𝒜 e2)" |
"𝒜 (while (b) e) = 𝒜 b" |
"𝒜 (throw e) = None" |

"𝒜s ([]) = {}" |
"𝒜s (e#es) = 𝒜 e  𝒜s es"

primrec 𝒟 :: "expr  hyperset  bool" and 𝒟s :: "expr list  hyperset  bool" where
"𝒟 (new C) A = True" |
"𝒟 (Cast C e) A = 𝒟 e A" |
"𝒟 (Ce) A = 𝒟 e A" |
"𝒟 (Val v) A = True" |
"𝒟 (e1 «bop» e2) A = (𝒟 e1 A  𝒟 e2 (A  𝒜 e1))" |
"𝒟 (Var V) A = (V ∈∈ A)" |
"𝒟 (LAss V e) A = 𝒟 e A" |
"𝒟 (eF{Cs}) A = 𝒟 e A" |
"𝒟 (e1F{Cs}:=e2) A = (𝒟 e1 A  𝒟 e2 (A  𝒜 e1))" |
"𝒟 (Call e Copt M es) A = (𝒟 e A  𝒟s es (A  𝒜 e))" |
"𝒟 ({V:T; e}) A = 𝒟 e (A  V)" |
"𝒟 (e1;;e2) A = (𝒟 e1 A  𝒟 e2 (A  𝒜 e1))" |
"𝒟 (if (e) e1 else e2) A =
  (𝒟 e A  𝒟 e1 (A  𝒜 e)  𝒟 e2 (A  𝒜 e))" |
"𝒟 (while (e) c) A = (𝒟 e A  𝒟 c (A  𝒜 e))" |
"𝒟 (throw e) A = 𝒟 e A" |

"𝒟s ([]) A = True" |
"𝒟s (e#es) A = (𝒟 e A  𝒟s es (A  𝒜 e))"

lemma As_map_Val[simp]: "𝒜s (map Val vs) = {}"
by (induct vs) simp_all

lemma D_append[iff]: "A. 𝒟s (es @ es') A = (𝒟s es A  𝒟s es' (A  𝒜s es))"
by (induct es type:list) (auto simp:hyperUn_assoc)


lemma A_fv: "A. 𝒜 e = A  A  fv e"
and  "A. 𝒜s es = A  A  fvs es"

apply(induct e and es rule: 𝒜.induct 𝒜s.induct)
apply (simp_all add:hyperset_defs)
apply blast+
done



lemma sqUn_lem: "A  A'  A  B  A'  B"
by(simp add:hyperset_defs) blast

lemma diff_lem: "A  A'  A  b  A'  b"
by(simp add:hyperset_defs) blast

(* This order of the premises avoids looping of the simplifier *)
lemma D_mono: "A A'. A  A'  𝒟 e A  𝒟 (e::expr) A'"
and Ds_mono: "A A'. A  A'  𝒟s es A  𝒟s (es::expr list) A'"

apply(induct e and es rule: 𝒟.induct 𝒟s.induct)
apply simp
apply simp
apply simp
apply simp
apply simp apply (iprover dest:sqUn_lem)
apply (fastforce simp add:hyperset_defs)
apply simp
apply simp
apply simp apply (iprover dest:sqUn_lem)
apply simp apply (iprover dest:sqUn_lem)
apply simp apply (iprover dest:diff_lem)
apply simp apply (iprover dest:sqUn_lem)
apply simp apply (iprover dest:sqUn_lem)
apply simp apply (iprover dest:sqUn_lem)
apply simp
apply simp 
apply simp
apply (iprover dest:sqUn_lem)
done


(* And this is the order of premises preferred during application: *)
lemma D_mono': "𝒟 e A  A  A'  𝒟 e A'"
and Ds_mono': "𝒟s es A  A  A'  𝒟s es A'"
by(blast intro:D_mono, blast intro:Ds_mono)

end