Theory Howgrave_Graham
section ‹ Howgrave-Graham's theorem ›
text ‹ In this file, we prove a result due to Howgrave-Graham on small-enough roots of
polynomials mod M (see Theorem 19.1.2 in "Mathematics of Public Key Cryptography" by Galbraith). ›
theory Howgrave_Graham
imports Coppersmith_Algorithm
"HOL-Analysis.L2_Norm"
"LLL_Basis_Reduction.Norms"
begin
abbreviation euclidean_norm_int_vec::"int vec ⇒ real"
where "euclidean_norm_int_vec v ≡ sqrt (sq_norm_vec v)"
abbreviation euclidean_norm_real_vec::"real vec ⇒ real"
where "euclidean_norm_real_vec v ≡ sqrt (sq_norm_vec v)"
lemma euclidean_norm_int_vec_eq:
shows "euclidean_norm_int_vec v = sqrt (∑i<(dim_vec v). (v$i)^2)"
unfolding sq_norm_vec_def sum_list_sum_nth
by (auto simp add: list_of_vec_index lessThan_atLeast0 power2_eq_square)
lemma euclidean_norm_real_vec_eq:
shows "sqrt (sq_norm_vec v) = sqrt (∑i<(dim_vec v). (v$i)^2)"
unfolding sq_norm_vec_def sum_list_sum_nth
by (auto simp add: list_of_vec_index lessThan_atLeast0 power2_eq_square)
lemma euclidean_norm_gteq0:
shows "euclidean_norm_real_vec (a::real vec) ≥ 0"
"euclidean_norm_int_vec (c::int vec) ≥ 0"
by (auto simp add: sq_norm_vec_ge_0)
lemma dim_vec_vec_associated_to_poly[simp]:
shows "dim_vec (vec_associated_to_poly F X) = degree F + 1"
unfolding vec_associated_to_poly_def by auto
lemma Cauchy_Schwarz_sum:
fixes n:: "nat"
fixes x:: "nat ⇒ real"
shows "(∑i≤n. x i) ≤ sqrt ((n+1) * (∑i≤n. (x i)^2))"
proof -
have "(∑i≤n. x i) ≤ (∑i≤n. ¦x i¦ * ¦1¦)"
by (auto intro!: sum_mono)
also have "... ≤ L2_set x {..n} * L2_set (λ_. 1) {..n}"
using L2_set_mult_ineq
by fastforce
also have "... = sqrt (∑i≤n. (x i)⇧2) * sqrt (∑i≤n. 1⇧2)"
unfolding L2_set_def by auto
also have "... = sqrt ( (n+1) * (∑i≤n. (x i)⇧2))"
using real_sqrt_mult by auto
finally show ?thesis .
qed
lemma abs_mult_sum:
fixes f g:: "nat ⇒ real"
fixes n:: "nat"
shows "abs(∑i≤n. (f i)*(g i))
≤ (∑i≤n. (abs (f i))*(abs (g i)))"
proof (induct n)
case 0
have " ¦f 0 * g 0¦ ≤ ¦f 0¦ * ¦g 0¦"
by (simp add: abs_mult)
then show ?case using 0
by auto
case (Suc n)
then have "¦∑i≤Suc n. f i * g i¦ ≤ ¦∑i≤n. f i * g i¦ + ¦f (Suc n) * g (Suc n)¦ "
by (simp add: abs_triangle_ineq)
then have "¦∑i≤Suc n. f i * g i¦ ≤ (∑i≤n. ¦f i¦ * ¦g i¦) + ¦f (Suc n) * g (Suc n)¦"
using Suc by auto
then show ?case
using abs_mult[of "f (Suc n)" "g (Suc n)"]
by (metis (mono_tags, lifting) sum.atMost_Suc)
qed
lemma sum_helper:
fixes g h:: "nat ⇒ real"
assumes "∀ i ≤ n. f i ≥ 0"
assumes "∀i ≤ n. g i ≤ h i"
shows "(∑i≤n. (f i)* (g i)) ≤ (∑i≤n. (f i)* (h i))"
using assms
proof (induct n)
case 0
have "0 ≤ f 0 ⟹ g 0 ≤ h 0 ⟹ f 0 * g 0 ≤ f 0 * h 0"
by (simp add: mult_left_mono)
then show ?case using 0
by auto
next
case (Suc n)
have "0 ≤ f (Suc n) ⟹ g (Suc n) ≤ h (Suc n) ⟹ f (Suc n) * g (Suc n) ≤ f (Suc n) * h (Suc n)"
by (simp add: mult_left_mono)
then have Suc_h: "f (Suc n) * g (Suc n) ≤ f (Suc n) * h (Suc n)"
using Suc by auto
have ind_h: "(∑i≤n. f i * g i) ≤ (∑i≤n. f i * h i)"
using Suc by auto
show ?case using ind_h Suc_h
by auto
qed
theorem Howgrave_Graham:
fixes F :: "real poly"
fixes M X :: "nat"
fixes x0 k :: "int"
assumes M_gt: "M > 0"
assumes root_mod_M: "poly F (real_of_int x0) = k * M"
assumes root_bound: "abs x0 ≤ X"
assumes norm_bound: "sqrt (∥vec_associated_to_poly F X∥⇧2) < M / sqrt (degree F + 1)"
shows "poly F x0 = 0"
proof -
let ?d = "degree F"
let ?bF = "vec_associated_to_poly F X"
have h2: "i≤?d ⟹ real_of_int(¦x0¦ ^ i) ≤ real (X ^ i)" for i
using root_bound
by (simp add: linordered_semidom_class.power_mono)
have "abs (poly F x0) =
abs (∑i≤?d. (coeff F i)* x0^i)"
using poly_altdef
by (smt (verit) of_int_power sum.cong)
also have "... ≤ (∑n≤?d. ¦poly.coeff F n * real_of_int (x0 ^ n)¦)"
by blast
also have "... = (∑n≤?d. ¦poly.coeff F n¦ * real_of_int (¦x0¦ ^ n))"
by (simp add: abs_mult power_abs)
also have "... ≤ (∑n≤?d. ¦poly.coeff F n¦ * (X^n))"
using h2
by (auto intro:sum_mono simp add: mult_left_mono)
also have "... ≤ sqrt ((?d+1)*(∑n≤?d. (¦poly.coeff F n¦ * (X^n))^2))"
using Cauchy_Schwarz_sum by blast
also have "... = sqrt ((?d+1)*(∑n≤?d. (poly.coeff F n * (X^n))^2))"
by (simp add: power_mult_distrib)
also have "... = sqrt ((?d+1)*(∑i≤?d. (?bF $ i)^2))"
unfolding vec_associated_to_poly_def by auto
also have "... = sqrt ((?d+1)*(∑i<?d+1. (?bF $ i)^2))"
using Suc_eq_plus1 lessThan_Suc_atMost by presburger
also have "... = sqrt (?d+1) * sqrt (∑i<?d+1. (?bF $ i)^2)"
using real_sqrt_mult by blast
also have "... = sqrt (?d+1) * sqrt (sq_norm_vec ?bF)"
unfolding euclidean_norm_real_vec_eq
by force
also have "... < M"
using norm_bound
by (smt (verit, ccfv_SIG) Groups.mult_ac(2) add_is_0 eq_numeral_extra(2) mult_imp_div_pos_le of_nat_le_0_iff real_sqrt_gt_zero)
finally have "abs (poly F x0) < M" .
then have "-M < poly F x0 ∧ poly F x0 < M"
by linarith
thus ?thesis
using root_mod_M M_gt
by (smt (verit, del_insts) aux_abs_int mult.commute mult_eq_0_iff of_int_hom.hom_0_iff of_int_less_iff of_int_of_nat_eq)
qed
abbreviation int_poly_to_real_poly:: "int poly ⇒ real poly"
where "int_poly_to_real_poly F ≡ map_poly real_of_int F"
lemma int_poly_to_real_poly_same_norm:
fixes X :: nat
shows "euclidean_norm_int_vec (vec_associated_to_int_poly F X) =
euclidean_norm_real_vec (vec_associated_to_real_poly (int_poly_to_real_poly F) X)"
proof -
let ?d = "dim_vec (vec_associated_to_int_poly F X)"
have same_dim: "dim_vec (vec_associated_to_int_poly F X) =
dim_vec (vec_associated_to_real_poly (int_poly_to_real_poly F) X)"
by simp
have "⋀i. i < ?d ⟹ (vec_associated_to_real_poly (int_poly_to_real_poly F) X $ i) = (real_of_int (vec_associated_to_int_poly F X $ i))"
unfolding vec_associated_to_poly_def by auto
then have "(∑x<?d. (real_of_int (vec_associated_to_int_poly F X $ x))⇧2) =
(∑i<?d. (vec_associated_to_real_poly (int_poly_to_real_poly F) X $ i)⇧2)"
by fastforce
then show ?thesis
unfolding euclidean_norm_int_vec_eq euclidean_norm_real_vec_eq
using same_dim
by auto
qed
text ‹ Now we restate the result over int polys. ›
lemma Howgrave_Graham_int_poly:
fixes F:: "int poly"
fixes M X:: "nat"
fixes x0:: "int"
assumes M_gt: "M > 0"
assumes root_mod_M: "poly F x0 mod M = 0"
assumes root_bound: "abs x0 ≤ X"
assumes norm_bound: "sqrt (sq_norm_vec (vec_associated_to_int_poly F X)) < M / sqrt (degree F + 1)"
shows "poly F x0 = 0"
proof -
let ?rF = "int_poly_to_real_poly F"
from root_mod_M have ‹M dvd poly F x0›
by presburger
then obtain k where ‹poly F x0 = int M * k› ..
then have "poly ?rF (real_of_int x0) = 0"
apply (intro Howgrave_Graham[OF M_gt _ root_bound])
using assms int_poly_to_real_poly_same_norm[of F X] by auto
thus ?thesis by auto
qed
end