Theory List_Fusion
theory List_Fusion
imports
Main
begin
section ‹Shortcut fusion for lists›
lemma Option_map_mono [partial_function_mono]:
"mono_option f ⟹ mono_option (λx. map_option g (f x))"
apply(rule monotoneI)
apply(drule (1) monotoneD)
apply(auto simp add: map_option_case flat_ord_def split: option.split)
done
lemma list_all2_coinduct [consumes 1, case_names Nil Cons, case_conclusion Cons hd tl, coinduct pred: list_all2]:
assumes X: "X xs ys"
and Nil': "⋀xs ys. X xs ys ⟹ xs = [] ⟷ ys = []"
and Cons': "⋀xs ys. ⟦ X xs ys; xs ≠ []; ys ≠ [] ⟧ ⟹ A (hd xs) (hd ys) ∧ (X (tl xs) (tl ys) ∨ list_all2 A (tl xs) (tl ys))"
shows "list_all2 A xs ys"
using X
proof(induction xs arbitrary: ys)
case Nil
from Nil'[OF this] show ?case by simp
next
case (Cons x xs)
from Nil'[OF Cons.prems] Cons'[OF Cons.prems] Cons.IH
show ?case by(auto simp add: neq_Nil_conv)
qed
subsection ‹The type of generators for finite lists›
type_synonym ('a, 's) raw_generator = "('s ⇒ bool) × ('s ⇒ 'a × 's)"
inductive_set terminates_on :: "('a, 's) raw_generator ⇒ 's set"
for g :: "('a, 's) raw_generator"
where
stop: "¬ fst g s ⟹ s ∈ terminates_on g"
| unfold: "⟦ fst g s; snd (snd g s) ∈ terminates_on g ⟧ ⟹ s ∈ terminates_on g"
definition terminates :: "('a, 's) raw_generator ⇒ bool"
where "terminates g ⟷ (terminates_on g = UNIV)"
lemma terminatesI [intro?]:
"(⋀s. s ∈ terminates_on g) ⟹ terminates g"
by(auto simp add: terminates_def)
lemma terminatesD:
"terminates g ⟹ s ∈ terminates_on g"
by(auto simp add: terminates_def)
lemma terminates_on_stop:
"terminates_on (λ_. False, next) = UNIV"
by(auto intro: terminates_on.stop)
lemma wf_terminates:
assumes "wf R"
and step: "⋀s. fst g s ⟹ (snd (snd g s), s) ∈ R"
shows "terminates g"
proof(rule terminatesI)
fix s
from ‹wf R› show "s ∈ terminates_on g"
proof(induction rule: wf_induct[rule_format, consumes 1, case_names wf])
case (wf s)
show ?case
proof(cases "fst g s")
case True
hence "(snd (snd g s), s) ∈ R" by(rule step)
hence "snd (snd g s) ∈ terminates_on g" by(rule wf.IH)
with True show ?thesis by(rule terminates_on.unfold)
qed(rule terminates_on.stop)
qed
qed
lemma terminates_wfD:
assumes "terminates g"
shows "wf {(snd (snd g s), s) | s . fst g s}"
proof(rule wfUNIVI)
fix thesis s
assume wf [rule_format]: "∀s. (∀s'. (s', s) ∈ {(snd (snd g s), s) |s. fst g s} ⟶ thesis s') ⟶ thesis s"
from assms have "s ∈ terminates_on g" by(auto simp add: terminates_def)
thus "thesis s" by induct (auto intro: wf)
qed
lemma terminates_wfE:
assumes "terminates g"
obtains R where "wf R" "⋀s. fst g s ⟹ (snd (snd g s), s) ∈ R"
by(rule that)(rule terminates_wfD[OF assms], simp)
context fixes g :: "('a, 's) raw_generator" begin
partial_function (option) terminates_within :: "'s ⇒ nat option"
where
"terminates_within s =
(let (has_next, next) = g
in if has_next s then
map_option (λn. n + 1) (terminates_within (snd (next s)))
else Some 0)"
lemma terminates_on_conv_dom_terminates_within:
"terminates_on g = dom terminates_within"
proof(safe)
fix s
assume "s ∈ terminates_on g"
then show "∃n. terminates_within s = Some n"
by(induct)(subst terminates_within.simps, simp add: split_beta)+
next
fix s n
assume "terminates_within s = Some n"
then show "s ∈ terminates_on g"
by(induct rule: terminates_within.raw_induct[rotated 1, consumes 1])(auto simp add: split_beta split: if_split_asm intro: terminates_on.intros)
qed
end
lemma terminates_within_unfold:
"has_next s ⟹
terminates_within (has_next, next) s = map_option (λn. n + 1) (terminates_within (has_next, next) (snd (next s)))"
by(simp add: terminates_within.simps)
typedef ('a, 's) generator = "{g :: ('a, 's) raw_generator. terminates g}"
morphisms generator Generator
proof
show "(λ_. False, undefined) ∈ ?generator"
by(simp add: terminates_on_stop terminates_def)
qed
setup_lifting type_definition_generator
lemma terminates_on_generator_eq_UNIV:
"terminates_on (generator g) = UNIV"
by transfer(simp add: terminates_def)
lemma terminates_within_stop:
"terminates_within (λ_. False, next) s = Some 0"
by(simp add: terminates_within.simps)
lemma terminates_within_generator_neq_None:
"terminates_within (generator g) s ≠ None"
by(transfer)(auto simp add: terminates_def terminates_on_conv_dom_terminates_within)
locale list =
fixes g :: "('a, 's) generator" begin
definition has_next :: "'s ⇒ bool"
where "has_next = fst (generator g)"
definition "next" :: "'s ⇒ 'a × 's"
where "next = snd (generator g)"
function unfoldr :: "'s ⇒ 'a list"
where "unfoldr s = (if has_next s then let (a, s') = next s in a # unfoldr s' else [])"
by pat_completeness auto
termination
proof -
have "terminates (generator g)" using generator[of g] by simp
thus ?thesis
by(rule terminates_wfE)(erule "termination", metis has_next_def next_def snd_conv)
qed
declare unfoldr.simps [simp del]
lemma unfoldr_simps:
"has_next s ⟹ unfoldr s = fst (next s) # unfoldr (snd (next s))"
"¬ has_next s ⟹ unfoldr s = []"
by(simp_all add: unfoldr.simps split_beta)
end
declare
list.has_next_def[code]
list.next_def[code]
list.unfoldr.simps[code]
context includes lifting_syntax
begin
lemma generator_has_next_transfer [transfer_rule]:
"(pcr_generator (=) (=) ===> (=)) fst list.has_next"
by(auto simp add: generator.pcr_cr_eq cr_generator_def list.has_next_def dest: sym)
lemma generator_next_transfer [transfer_rule]:
"(pcr_generator (=) (=) ===> (=)) snd list.next"
by(auto simp add: generator.pcr_cr_eq cr_generator_def list.next_def)
end
lemma unfoldr_eq_Nil_iff [iff]:
"list.unfoldr g s = [] ⟷ ¬ list.has_next g s"
by(subst list.unfoldr.simps)(simp add: split_beta)
lemma Nil_eq_unfoldr_iff [simp]:
"[] = list.unfoldr g s ⟷ ¬ list.has_next g s"
by(auto intro: sym dest: sym)
subsection ‹Generators for @{typ "'a list"}›
primrec list_has_next :: "'a list ⇒ bool"
where
"list_has_next [] ⟷ False"
| "list_has_next (x # xs) ⟷ True"
primrec list_next :: "'a list ⇒ 'a × 'a list"
where
"list_next (x # xs) = (x, xs)"
lemma terminates_list_generator: "terminates (list_has_next, list_next)"
proof
fix xs
show "xs ∈ terminates_on (list_has_next, list_next)"
by(induct xs)(auto intro: terminates_on.intros)
qed
lift_definition list_generator :: "('a, 'a list) generator"
is "(list_has_next, list_next)"
by(rule terminates_list_generator)
lemma has_next_list_generator [simp]:
"list.has_next list_generator = list_has_next"
by transfer simp
lemma next_list_generator [simp]:
"list.next list_generator = list_next"
by transfer simp
lemma unfoldr_list_generator:
"list.unfoldr list_generator xs = xs"
by(induct xs)(simp_all add: list.unfoldr_simps)
lemma terminates_replicate_generator:
"terminates (λn :: nat. 0 < n, λn. (a, n - 1))"
by(rule wf_terminates)(lexicographic_order)
lift_definition replicate_generator :: "'a ⇒ ('a, nat) generator"
is "λa. (λn. 0 < n, λn. (a, n - 1))"
by(rule terminates_replicate_generator)
lemma has_next_replicate_generator [simp]:
"list.has_next (replicate_generator a) n ⟷ 0 < n"
by transfer simp
lemma next_replicate_generator [simp]:
"list.next (replicate_generator a) n = (a, n - 1)"
by transfer simp
lemma unfoldr_replicate_generator:
"list.unfoldr (replicate_generator a) n = replicate n a"
by(induct n)(simp_all add: list.unfoldr_simps)
context fixes f :: "'a ⇒ 'b" begin
lift_definition map_generator :: "('a, 's) generator ⇒ ('b, 's) generator"
is "λ(has_next, next). (has_next, λs. let (a, s') = next s in (f a, s'))"
by(erule terminates_wfE)(erule wf_terminates, auto simp add: split_beta)
lemma has_next_map_generator [simp]:
"list.has_next (map_generator g) = list.has_next g"
by transfer clarsimp
lemma next_map_generator [simp]:
"list.next (map_generator g) = apfst f ∘ list.next g"
by transfer(simp add: fun_eq_iff split_beta apfst_def map_prod_def)
lemma unfoldr_map_generator:
"list.unfoldr (map_generator g) = map f ∘ list.unfoldr g"
(is "?lhs = ?rhs")
proof(rule ext)
fix s
show "?lhs s = ?rhs s"
by(induct s taking: "map_generator g" rule: list.unfoldr.induct)
(subst (1 2) list.unfoldr.simps, auto simp add: split_beta apfst_def map_prod_def)
qed
end
context fixes g1 :: "('a, 's1) raw_generator"
and g2 :: "('a, 's2) raw_generator"
begin
fun append_has_next :: "'s1 × 's2 + 's2 ⇒ bool"
where
"append_has_next (Inl (s1, s2)) ⟷ fst g1 s1 ∨ fst g2 s2"
| "append_has_next (Inr s2) ⟷ fst g2 s2"
fun append_next :: "'s1 × 's2 + 's2 ⇒ 'a × ('s1 × 's2 + 's2)"
where
"append_next (Inl (s1, s2)) =
(if fst g1 s1 then
let (x, s1') = snd g1 s1 in (x, Inl (s1', s2))
else append_next (Inr s2))"
| "append_next (Inr s2) = (let (x, s2') = snd g2 s2 in (x, Inr s2'))"
end
lift_definition append_generator :: "('a, 's1) generator ⇒ ('a, 's2) generator ⇒ ('a, 's1 × 's2 + 's2) generator"
is "λg1 g2. (append_has_next g1 g2, append_next g1 g2)"
proof(rule terminatesI, safe)
fix has_next1 and next1 :: "'s1 ⇒ 'a × 's1"
and has_next2 and next2 :: "'s2 ⇒ 'a × 's2"
and s
assume t1: "terminates (has_next1, next1)"
and t2: "terminates (has_next2, next2)"
let ?has_next = "append_has_next (has_next1, next1) (has_next2, next2)"
let ?next = "append_next (has_next1, next1) (has_next2, next2)"
note [simp] = split_beta
and [intro] = terminates_on.intros
{ fix s2 :: 's2
from t2 have "s2 ∈ terminates_on (has_next2, next2)" by(rule terminatesD)
hence "Inr s2 ∈ terminates_on (?has_next, ?next)" by induct auto }
note Inr' = this
show "s ∈ terminates_on (?has_next, ?next)"
proof(cases s)
case Inr thus ?thesis by(simp add: Inr')
next
case (Inl s1s2)
moreover obtain s1 s2 where "s1s2 = (s1, s2)" by(cases s1s2)
ultimately have s: "s = Inl (s1, s2)" by simp
from t1 have "s1 ∈ terminates_on (has_next1, next1)" by(rule terminatesD)
thus ?thesis unfolding s
proof induct
case stop thus ?case
by(cases "has_next2 s2")(auto simp add: Inr')
qed auto
qed
qed
definition append_init :: "'s1 ⇒ 's2 ⇒ 's1 × 's2 + 's2"
where "append_init s1 s2 = Inl (s1, s2)"
lemma has_next_append_generator [simp]:
"list.has_next (append_generator g1 g2) (Inl (s1, s2)) ⟷
list.has_next g1 s1 ∨ list.has_next g2 s2"
"list.has_next (append_generator g1 g2) (Inr s2) ⟷ list.has_next g2 s2"
by(transfer, simp)+
lemma next_append_generator [simp]:
"list.next (append_generator g1 g2) (Inl (s1, s2)) =
(if list.has_next g1 s1 then
let (x, s1') = list.next g1 s1 in (x, Inl (s1', s2))
else list.next (append_generator g1 g2) (Inr s2))"
"list.next (append_generator g1 g2) (Inr s2) = apsnd Inr (list.next g2 s2)"
by(transfer, simp add: apsnd_def map_prod_def)+
lemma unfoldr_append_generator_Inr:
"list.unfoldr (append_generator g1 g2) (Inr s2) = list.unfoldr g2 s2"
by(induct s2 taking: g2 rule: list.unfoldr.induct)(subst (1 2) list.unfoldr.simps, auto split: prod.splits)
lemma unfoldr_append_generator_Inl:
"list.unfoldr (append_generator g1 g2) (Inl (s1, s2)) =
list.unfoldr g1 s1 @ list.unfoldr g2 s2"
apply(induct s1 taking: g1 rule: list.unfoldr.induct)
apply(subst (1 2 3) list.unfoldr.simps)
apply(auto split: prod.splits simp add: apsnd_def map_prod_def unfoldr_append_generator_Inr)
apply(simp add: list.unfoldr_simps)
done
lemma unfoldr_append_generator:
"list.unfoldr (append_generator g1 g2) (append_init s1 s2) =
list.unfoldr g1 s1 @ list.unfoldr g2 s2"
by(simp add: unfoldr_append_generator_Inl append_init_def)
lift_definition zip_generator :: "('a, 's1) generator ⇒ ('b, 's2) generator ⇒ ('a × 'b, 's1 × 's2) generator"
is "λ(has_next1, next1) (has_next2, next2).
(λ(s1, s2). has_next1 s1 ∧ has_next2 s2,
λ(s1, s2). let (x, s1') = next1 s1; (y, s2') = next2 s2
in ((x, y), (s1', s2')))"
proof(rule terminatesI, safe)
fix has_next1 next1 has_next2 next2 s1 s2
assume t1: "terminates (has_next1, next1)"
and t2: "terminates (has_next2, next2)"
have "s1 ∈ terminates_on (has_next1, next1)" "s2 ∈ terminates_on (has_next2, next2)"
using t1 t2 by(simp_all add: terminatesD)
thus "(s1, s2) ∈ terminates_on (λ(s1, s2). has_next1 s1 ∧ has_next2 s2, λ(s1, s2). let (x, s1') = next1 s1; (y, s2') = next2 s2 in ((x, y), (s1', s2')))"
by(induct arbitrary: s2)(auto 4 3 elim: terminates_on.cases intro: terminates_on.intros simp add: split_beta Let_def)
qed
abbreviation (input) zip_init :: "'s1 ⇒ 's2 ⇒ 's1 × 's2"
where "zip_init ≡ Pair"
lemma has_next_zip_generator [simp]:
"list.has_next (zip_generator g1 g2) (s1, s2) ⟷
list.has_next g1 s1 ∧ list.has_next g2 s2"
by transfer clarsimp
lemma next_zip_generator [simp]:
"list.next (zip_generator g1 g2) (s1, s2) =
((fst (list.next g1 s1), fst (list.next g2 s2)),
(snd (list.next g1 s1), snd (list.next g2 s2)))"
by transfer(simp add: split_beta)
lemma unfoldr_zip_generator:
"list.unfoldr (zip_generator g1 g2) (zip_init s1 s2) =
zip (list.unfoldr g1 s1) (list.unfoldr g2 s2)"
by(induct "(s1, s2)" arbitrary: s1 s2 taking: "zip_generator g1 g2" rule: list.unfoldr.induct)
(subst (1 2 3) list.unfoldr.simps, auto 9 2 simp add: split_beta)
context fixes bound :: nat begin
lift_definition upt_generator :: "(nat, nat) generator"
is "(λn. n < bound, λn. (n, Suc n))"
by(rule wf_terminates)(relation "measure (λn. bound - n)", auto)
lemma has_next_upt_generator [simp]:
"list.has_next upt_generator n ⟷ n < bound"
by transfer simp
lemma next_upt_generator [simp]:
"list.next upt_generator n = (n, Suc n)"
by transfer simp
lemma unfoldr_upt_generator:
"list.unfoldr upt_generator n = [n..<bound]"
by(induct "bound - n" arbitrary: n)(simp_all add: list.unfoldr_simps upt_conv_Cons)
end
context fixes bound :: int begin
lift_definition upto_generator :: "(int, int) generator"
is "(λn. n ≤ bound, λn. (n, n + 1))"
by(rule wf_terminates)(relation "measure (λn. nat (bound + 1 - n))", auto)
lemma has_next_upto_generator [simp]:
"list.has_next upto_generator n ⟷ n ≤ bound"
by transfer simp
lemma next_upto_generator [simp]:
"list.next upto_generator n = (n, n + 1)"
by transfer simp
lemma unfoldr_upto_generator:
"list.unfoldr upto_generator n = [n..bound]"
by(induct n taking: upto_generator rule: list.unfoldr.induct)(subst list.unfoldr.simps, subst upto.simps, auto)
end
context
fixes P :: "'a ⇒ bool"
begin
context
fixes g :: "('a, 's) raw_generator"
begin
inductive filter_has_next :: "'s ⇒ bool"
where
"⟦ fst g s; P (fst (snd g s)) ⟧ ⟹ filter_has_next s"
| "⟦ fst g s; ¬ P (fst (snd g s)); filter_has_next (snd (snd g s)) ⟧ ⟹ filter_has_next s"
partial_function (tailrec) filter_next :: "'s ⇒ 'a × 's"
where
"filter_next s = (let (x, s') = snd g s in if P x then (x, s') else filter_next s')"
end
lift_definition filter_generator :: "('a, 's) generator ⇒ ('a, 's) generator"
is "λg. (filter_has_next g, filter_next g)"
proof(rule wf_terminates)
fix g :: "('a, 's) raw_generator" and s
let ?R = "{(snd (snd g s), s) | s. fst g s}"
let ?g = "(filter_has_next g, filter_next g)"
assume "terminates g"
thus "wf (?R⇧+)" by(rule terminates_wfD[THEN wf_trancl])
assume "fst ?g s"
hence "filter_has_next g s" by simp
thus "(snd (snd ?g s), s) ∈ ?R⇧+"
by induct(subst filter_next.simps, auto simp add: split_beta filter_next.simps split del: if_split intro: trancl_into_trancl)
qed
lemma has_next_filter_generator:
"list.has_next (filter_generator g) s ⟷
list.has_next g s ∧ (let (x, s') = list.next g s in if P x then True else list.has_next (filter_generator g) s')"
apply(transfer)
apply simp
apply(subst filter_has_next.simps)
apply auto
done
lemma next_filter_generator:
"list.next (filter_generator g) s =
(let (x, s') = list.next g s
in if P x then (x, s') else list.next (filter_generator g) s')"
apply transfer
apply simp
apply(subst filter_next.simps)
apply(simp cong: if_cong)
done
lemma has_next_filter_generator_induct [consumes 1, case_names find step]:
assumes "list.has_next (filter_generator g) s"
and find: "⋀s. ⟦ list.has_next g s; P (fst (list.next g s)) ⟧ ⟹ Q s"
and step: "⋀s. ⟦ list.has_next g s; ¬ P (fst (list.next g s)); Q (snd (list.next g s)) ⟧ ⟹ Q s"
shows "Q s"
using assms by transfer(auto elim: filter_has_next.induct)
lemma filter_generator_empty_conv:
"list.has_next (filter_generator g) s ⟷ (∃x∈set (list.unfoldr g s). P x)" (is "?lhs ⟷ ?rhs")
proof
assume "?lhs"
thus ?rhs
proof(induct rule: has_next_filter_generator_induct)
case (find s)
thus ?case
by(cases "list.next g s")(subst list.unfoldr.simps, auto)
next
case (step s)
thus ?case
by(cases "list.next g s")(subst list.unfoldr.simps, auto)
qed
next
assume ?rhs
then obtain x where "x ∈ set (list.unfoldr g s)" "P x" by blast
thus ?lhs
proof(induct xs≡"list.unfoldr g s" arbitrary: s)
case Nil thus ?case by(simp del: Nil_eq_unfoldr_iff)
next
case (Cons x' xs)
from ‹x' # xs = list.unfoldr g s›[symmetric, simp]
have [simp]: "fst (list.next g s) = x' ∧ list.has_next g s ∧ list.unfoldr g (snd (list.next g s)) = xs"
by(subst (asm) list.unfoldr.simps)(simp add: split_beta split: if_split_asm)
from Cons.hyps(1)[of "snd (list.next g s)"] ‹x ∈ set (list.unfoldr g s)› ‹P x› show ?case
by(subst has_next_filter_generator)(auto simp add: split_beta)
qed
qed
lemma unfoldr_filter_generator:
"list.unfoldr (filter_generator g) s = filter P (list.unfoldr g s)"
unfolding list_all2_eq
proof(coinduction arbitrary: s)
case Nil
thus ?case by(simp add: filter_empty_conv filter_generator_empty_conv)
next
case (Cons s)
hence "list.has_next (filter_generator g) s" by simp
thus ?case
proof(induction rule: has_next_filter_generator_induct)
case (find s)
thus ?case
apply(subst (1 2 3 5) list.unfoldr.simps)
apply(subst (1 2) has_next_filter_generator)
apply(subst next_filter_generator)
apply(simp add: split_beta)
apply(rule disjI1 exI conjI refl)+
apply(subst next_filter_generator)
apply(simp add: split_beta)
done
next
case (step s)
from step.hyps
have "list.unfoldr (filter_generator g) s = list.unfoldr (filter_generator g) (snd (list.next g s))"
apply(subst (1 2) list.unfoldr.simps)
apply(subst has_next_filter_generator)
apply(subst next_filter_generator)
apply(auto simp add: split_beta)
done
moreover from step.hyps
have "filter P (list.unfoldr g (snd (list.next g s))) = filter P (list.unfoldr g s)"
by(subst (2) list.unfoldr.simps)(auto simp add: split_beta)
ultimately show ?case using step.IH by simp
qed
qed
end
subsection ‹Destroying lists›
definition hd_fusion :: "('a, 's) generator ⇒ 's ⇒ 'a"
where "hd_fusion g s = hd (list.unfoldr g s)"
lemma hd_fusion_code [code]:
"hd_fusion g s = (if list.has_next g s then fst (list.next g s) else undefined)"
unfolding hd_fusion_def
by(subst list.unfoldr.simps)(simp add: hd_def split_beta)
declare hd_fusion_def [symmetric, code_unfold]
definition fold_fusion :: "('a, 's) generator ⇒ ('a ⇒ 'b ⇒ 'b) ⇒ 's ⇒ 'b ⇒ 'b"
where "fold_fusion g f s = fold f (list.unfoldr g s)"
lemma fold_fusion_code [code]:
"fold_fusion g f s b =
(if list.has_next g s then
let (x, s') = list.next g s
in fold_fusion g f s' (f x b)
else b)"
unfolding fold_fusion_def
by(subst list.unfoldr.simps)(simp add: split_beta)
declare fold_fusion_def[symmetric, code_unfold]
definition gen_length_fusion :: "('a, 's) generator ⇒ nat ⇒ 's ⇒ nat"
where "gen_length_fusion g n s = n + length (list.unfoldr g s)"
lemma gen_length_fusion_code [code]:
"gen_length_fusion g n s =
(if list.has_next g s then gen_length_fusion g (Suc n) (snd (list.next g s)) else n)"
unfolding gen_length_fusion_def
by(subst list.unfoldr.simps)(simp add: split_beta)
definition length_fusion :: "('a, 's) generator ⇒ 's ⇒ nat"
where "length_fusion g s = length (list.unfoldr g s)"
lemma length_fusion_code [code]:
"length_fusion g = gen_length_fusion g 0"
by(simp add: fun_eq_iff length_fusion_def gen_length_fusion_def)
declare length_fusion_def[symmetric, code_unfold]
definition map_fusion :: "('a ⇒ 'b) ⇒ ('a, 's) generator ⇒ 's ⇒ 'b list"
where "map_fusion f g s = map f (list.unfoldr g s)"
lemma map_fusion_code [code]:
"map_fusion f g s =
(if list.has_next g s then
let (x, s') = list.next g s
in f x # map_fusion f g s'
else [])"
unfolding map_fusion_def
by(subst list.unfoldr.simps)(simp add: split_beta)
declare map_fusion_def[symmetric, code_unfold]
definition append_fusion :: "('a, 's1) generator ⇒ ('a, 's2) generator ⇒ 's1 ⇒ 's2 ⇒ 'a list"
where "append_fusion g1 g2 s1 s2 = list.unfoldr g1 s1 @ list.unfoldr g2 s2"
lemma append_fusion [code]:
"append_fusion g1 g2 s1 s2 =
(if list.has_next g1 s1 then
let (x, s1') = list.next g1 s1
in x # append_fusion g1 g2 s1' s2
else list.unfoldr g2 s2)"
unfolding append_fusion_def
by(subst list.unfoldr.simps)(simp add: split_beta)
declare append_fusion_def[symmetric, code_unfold]
definition zip_fusion :: "('a, 's1) generator ⇒ ('b, 's2) generator ⇒ 's1 ⇒ 's2 ⇒ ('a × 'b) list"
where "zip_fusion g1 g2 s1 s2 = zip (list.unfoldr g1 s1) (list.unfoldr g2 s2)"
lemma zip_fusion_code [code]:
"zip_fusion g1 g2 s1 s2 =
(if list.has_next g1 s1 ∧ list.has_next g2 s2 then
let (x, s1') = list.next g1 s1;
(y, s2') = list.next g2 s2
in (x, y) # zip_fusion g1 g2 s1' s2'
else [])"
unfolding zip_fusion_def
by(subst (1 2) list.unfoldr.simps)(simp add: split_beta)
declare zip_fusion_def[symmetric, code_unfold]
definition list_all_fusion :: "('a, 's) generator ⇒ ('a ⇒ bool) ⇒ 's ⇒ bool"
where "list_all_fusion g P s = List.list_all P (list.unfoldr g s)"
lemma list_all_fusion_code [code]:
"list_all_fusion g P s ⟷
(list.has_next g s ⟶
(let (x, s') = list.next g s
in P x ∧ list_all_fusion g P s'))"
unfolding list_all_fusion_def
by(subst list.unfoldr.simps)(simp add: split_beta)
declare list_all_fusion_def[symmetric, code_unfold]
definition list_all2_fusion :: "('a ⇒ 'b ⇒ bool) ⇒ ('a, 's1) generator ⇒ ('b, 's2) generator ⇒ 's1 ⇒ 's2 ⇒ bool"
where
"list_all2_fusion P g1 g2 s1 s2 =
list_all2 P (list.unfoldr g1 s1) (list.unfoldr g2 s2)"
lemma list_all2_fusion_code [code]:
"list_all2_fusion P g1 g2 s1 s2 =
(if list.has_next g1 s1 then
list.has_next g2 s2 ∧
(let (x, s1') = list.next g1 s1;
(y, s2') = list.next g2 s2
in P x y ∧ list_all2_fusion P g1 g2 s1' s2')
else ¬ list.has_next g2 s2)"
unfolding list_all2_fusion_def
by(subst (1 2) list.unfoldr.simps)(simp add: split_beta)
declare list_all2_fusion_def[symmetric, code_unfold]
definition singleton_list_fusion :: "('a, 'state) generator ⇒ 'state ⇒ bool"
where "singleton_list_fusion gen state = (case list.unfoldr gen state of [_] ⇒ True | _ ⇒ False)"
lemma singleton_list_fusion_code [code]:
"singleton_list_fusion g s ⟷
list.has_next g s ∧ ¬ list.has_next g (snd (list.next g s))"
by(auto 4 5 simp add: singleton_list_fusion_def split: list.split if_split_asm prod.splits elim: list.unfoldr.elims dest: sym)
end