Theory UD_Tests
section‹Test suite for UD›
theory UD_Tests
imports
"../UD"
"../../IML_UT/IML_UT"
Complex_Main
begin
subsection‹Background›
definition (in topological_space) islimpt:: "'a ⇒ 'a set ⇒ bool"
where "islimpt x S ⟷ (∀T. x∈T ⟶ open T ⟶ (∃y∈S. y∈T ∧ y≠x))"
definition closure :: "('a::topological_space) set ⇒ 'a set"
where "closure S = S ∪ {x. islimpt x S}"
ud ‹topological_space.closed›
ud ‹islimpt›
lemma closed_with: "closed ≡ closed.with open"
unfolding closed_def closed.with_def .
definition closure_with :: "('a set ⇒ bool) ⇒ 'a set ⇒ 'a set"
where "closure_with τ ≡ λS. S ∪ {x. islimpt.with τ x S}"
lemma closure_with: "closure ≡ closure_with open"
unfolding closure_def islimpt.with closure_with_def .
subsection‹Tests›
ML_file‹UD_TEST_UNOVERLOAD_DEFINITION.ML›
ML‹
Lecker.test_group @{context} () [ud_test_unoverload_definition.test_suite]
›
end