Theory Refinement_Lattice
section ‹Refinement Lattice \label{S:lattice}›
theory Refinement_Lattice
imports
Main
begin
unbundle lattice_syntax
text ‹
The underlying lattice of commands is complete and distributive.
We follow the refinement calculus tradition so that $\nondet$
is non-deterministic choice and $c \refsto d$ means $c$ is refined
(or implemented) by $d$.
›
declare [[show_sorts]]
text ‹Remove existing notation for quotient as it interferes with the rely quotient›
no_notation Equiv_Relations.quotient (infixl ‹'/'/› 90)
class refinement_lattice = complete_distrib_lattice
begin
text ‹The refinement lattice infimum corresponds to non-deterministic choice for commands.›
abbreviation
refine :: "'a ⇒ 'a ⇒ bool" (infix ‹⊑› 50)
where
"c ⊑ d ≡ less_eq c d"
abbreviation
refine_strict :: "'a ⇒ 'a ⇒ bool" (infix ‹⊏› 50)
where
"c ⊏ d ≡ less c d"
text ‹Non-deterministic choice is monotonic in both arguments›
lemma inf_mono_left: "a ⊑ b ⟹ a ⊓ c ⊑ b ⊓ c"
using inf_mono by auto
lemma inf_mono_right: "c ⊑ d ⟹ a ⊓ c ⊑ a ⊓ d"
using inf_mono by auto
text ‹Binary choice is a special case of choice over a set.›
lemma Inf2_inf: "⨅{ f x | x. x ∈ {c, d}} = f c ⊓ f d"
proof -
have "{ f x | x. x ∈ {c, d}} = {f c, f d}" by blast
then have "⨅{ f x | x. x ∈ {c, d}} = ⨅{f c, f d}" by simp
also have "... = f c ⊓ f d" by simp
finally show ?thesis .
qed
text ‹Helper lemma for choice over indexed set.›
lemma INF_Inf: "(⨅x∈X. f x) = (⨅{f x |x. x ∈ X})"
by (simp add: Setcompr_eq_image)
lemma (in -) INF_absorb_args: "(⨅i j. (f::nat ⇒ 'c::complete_lattice) (i + j)) = (⨅k. f k)"
proof (rule order_class.order.antisym)
show "(⨅k. f k) ≤ (⨅i j. f (i + j))"
by (simp add: complete_lattice_class.INF_lower complete_lattice_class.le_INF_iff)
next
have "⋀k. ∃i j. f (i + j) ≤ f k"
by (metis Nat.add_0_right order_refl)
then have "⋀k. ∃i. (⨅j. f (i + j)) ≤ f k"
by (meson UNIV_I complete_lattice_class.INF_lower2)
then show "(⨅i j. f (i + j)) ≤ (⨅k. f k)"
by (simp add: complete_lattice_class.INF_mono)
qed
lemma (in -) nested_Collect: "{f y |y. y ∈ {g x |x. x ∈ X}} = {f (g x) |x. x ∈ X}"
by blast
text ‹A transition lemma for INF distributivity properties, going from Inf to INF,
qualified version followed by a straightforward one.›
lemma Inf_distrib_INF_qual:
fixes f :: "'a ⇒ 'a ⇒ 'a"
assumes qual: "P {d x |x. x ∈ X}"
assumes f_Inf_distrib: "⋀c D. P D ⟹ f c (⨅ D) = ⨅ {f c d | d . d ∈ D }"
shows "f c (⨅x∈X. d x) = (⨅x∈X. f c (d x))"
proof -
have "f c (⨅x∈X. d x) = f c (⨅{d x |x. x ∈ X})" by (simp add: INF_Inf)
also have "... = (⨅{f c dx |dx. dx ∈ {d x | x. x ∈ X}})" by (simp add: qual f_Inf_distrib)
also have "... = (⨅{f c (d x) |x. x ∈ X})" by (simp only: nested_Collect)
also have "... = (⨅x∈X. f c (d x))" by (simp add: INF_Inf)
finally show ?thesis .
qed
lemma Inf_distrib_INF:
fixes f :: "'a ⇒ 'a ⇒ 'a"
assumes f_Inf_distrib: "⋀c D. f c (⨅ D) = ⨅ {f c d | d . d ∈ D }"
shows "f c (⨅x∈X. d x) = (⨅x∈X. f c (d x))"
by (simp add: Setcompr_eq_image f_Inf_distrib image_comp)
end
lemmas refine_trans = order.trans
text ‹More transitivity rules to make calculational reasoning smoother›
declare ord_eq_le_trans[trans]
declare ord_le_eq_trans[trans]
declare dual_order.trans[trans]
abbreviation
dist_over_sup :: "('a::refinement_lattice ⇒ 'a) ⇒ bool"
where
"dist_over_sup F ≡ (∀ X . F (⨆ X) = (⨆x∈X. F (x)))"
abbreviation
dist_over_inf :: "('a::refinement_lattice ⇒ 'a) ⇒ bool"
where
"dist_over_inf F ≡ (∀ X . F (⨅ X) = (⨅x∈X. F (x)))"
end