Theory PartialHeapSA
subsection ‹Partial heaps: Partial maps from heap location to values›
theory PartialHeapSA
imports Mask "Package_logic.PackageLogic"
begin
subsubsection ‹Definitions›
type_synonym heap = "heap_loc ⇀ val"
type_synonym pre_state = "mask × heap"
definition valid_heap :: "mask ⇒ heap ⇒ bool" where
"valid_heap π h ⟷ (∀hl. ppos (π hl) ⟶ h hl ≠ None)"
fun valid_state :: "pre_state ⇒ bool" where
"valid_state (π, h) ⟷ valid_mask π ∧ valid_heap π h"
lemma valid_stateI:
assumes "valid_mask π"
and "⋀hl. ppos (π hl) ⟹ h hl ≠ None"
shows "valid_state (π, h)"
using assms(1) assms(2) valid_heap_def valid_state.simps by blast
definition empty_heap where "empty_heap hl = None"
lemma valid_pre_unit:
"valid_state (empty_mask, empty_heap)"
using pnone.rep_eq ppos.rep_eq valid_empty valid_stateI by fastforce
typedef state = "{ φ |φ. valid_state φ }"
using valid_pre_unit by blast
fun get_m :: "state ⇒ mask" where "get_m a = fst (Rep_state a)"
fun get_h :: "state ⇒ heap" where "get_h a = snd (Rep_state a)"
fun compatible_options where
"compatible_options (Some a) (Some b) ⟷ a = b"
| "compatible_options _ _ ⟷ True"
definition compatible_heaps :: "heap ⇒ heap ⇒ bool" where
"compatible_heaps h h' ⟷ (∀hl. compatible_options (h hl) (h' hl))"
definition compatible :: "pre_state ⇒ pre_state ⇒ bool" where
"compatible φ φ' ⟷ compatible_heaps (snd φ) (snd φ') ∧ valid_mask (add_masks (fst φ) (fst φ'))"
fun add_states :: "pre_state ⇒ pre_state ⇒ pre_state" where
"add_states (π, h) (π', h') = (add_masks π π', h ++ h')"
definition larger_heap where
"larger_heap h' h ⟷ (∀hl x. h hl = Some x ⟶ h' hl = Some x)"
definition unit :: "state" where
"unit = Abs_state (empty_mask, empty_heap)"
definition plus :: "state ⇒ state ⇀ state" (infixl ‹⊕› 63) where
"a ⊕ b = (if compatible (Rep_state a) (Rep_state b) then Some (Abs_state (add_states (Rep_state a) (Rep_state b))) else None)"
definition core :: "state ⇒ state" (‹ |_| ›) where
"core φ = Abs_state (empty_mask, get_h φ)"
definition stable :: "state ⇒ bool" where
"stable φ ⟷ (∀hl. ppos (get_m φ hl) ⟷ get_h φ hl ≠ None)"
subsubsection Lemmas
lemma valid_heapI:
assumes "⋀hl. ppos (π hl) ⟹ h hl ≠ None"
shows "valid_heap π h"
using assms valid_heap_def by presburger
lemma valid_state_decompose:
assumes "valid_state (add_masks a b, h)"
shows "valid_state (a, h)"
proof (rule valid_stateI)
show "valid_mask a"
using assms upper_valid_aux valid_state.simps by blast
fix hl assume "ppos (a hl)" then show "h hl ≠ None"
by (metis add_masks.simps assms ppos_add valid_heap_def valid_state.simps)
qed
lemma compatible_heapsI:
assumes "⋀hl a b. h hl = Some a ⟹ h' hl = Some b ⟹ a = b"
shows "compatible_heaps h h'"
by (metis assms compatible_heaps_def compatible_options.elims(3))
lemma compatibleI_old:
assumes "⋀hl x y. snd φ hl = Some x ∧ snd φ' hl = Some y ⟹ x = y"
and "valid_mask (add_masks (fst φ) (fst φ'))"
shows "compatible φ φ'"
using assms(1) assms(2) compatible_def compatible_heapsI by presburger
lemma larger_heap_anti:
assumes "larger_heap a b"
and "larger_heap b a"
shows "a = b"
proof (rule ext)
fix x show "a x = b x"
proof (cases "a x")
case None
then show ?thesis
by (metis assms(1) larger_heap_def not_None_eq)
next
case (Some a)
then show ?thesis
by (metis assms(2) larger_heap_def)
qed
qed
lemma larger_heapI:
assumes "⋀hl x. h hl = Some x ⟹ h' hl = Some x"
shows "larger_heap h' h"
by (simp add: assms larger_heap_def)
lemma larger_heap_refl:
"larger_heap h h"
using larger_heap_def by blast
lemma compatible_heaps_comm:
assumes "compatible_heaps a b"
shows "a ++ b = b ++ a"
proof (rule ext)
fix x show "(a ++ b) x = (b ++ a) x"
proof (cases "a x")
case None
then show ?thesis
by (simp add: domIff map_add_dom_app_simps(2) map_add_dom_app_simps(3))
next
case (Some a)
then show ?thesis
by (metis (no_types, lifting) assms compatible_heaps_def compatible_options.elims(2) map_add_None map_add_dom_app_simps(1) map_add_dom_app_simps(3))
qed
qed
lemma larger_heaps_sum_ineq:
assumes "larger_heap a' a"
and "larger_heap b' b"
and "compatible_heaps a' b'"
shows "larger_heap (a' ++ b') (a ++ b)"
proof (rule larger_heapI)
fix hl x assume "(a ++ b) hl = Some x"
show "(a' ++ b') hl = Some x"
proof (cases "a hl")
case None
then show ?thesis
by (metis ‹(a ++ b) hl = Some x› assms(2) larger_heap_def map_add_SomeD map_add_find_right)
next
case (Some aa)
then show ?thesis
by (metis (mono_tags, lifting) ‹(a ++ b) hl = Some x› assms(1) assms(2) assms(3) compatible_heaps_comm larger_heap_def map_add_Some_iff)
qed
qed
lemma larger_heap_trans:
assumes "larger_heap a b"
and "larger_heap b c"
shows "larger_heap a c"
by (metis (no_types, opaque_lifting) assms(1) assms(2) larger_heap_def)
lemma larger_heap_comp:
assumes "larger_heap a b"
and "compatible_heaps a c"
shows "compatible_heaps b c"
proof (rule compatible_heapsI)
fix hl a ba
assume "b hl = Some a" "c hl = Some ba"
then show "a = ba"
by (metis assms(1) assms(2) compatible_heaps_def compatible_options.simps(1) larger_heap_def)
qed
lemma larger_heap_plus:
assumes "larger_heap a b"
and "larger_heap a c"
shows "larger_heap a (b ++ c)"
proof (rule larger_heapI)
fix hl x assume "(b ++ c) hl = Some x"
then show "a hl = Some x"
proof (cases "b hl")
case None
then show ?thesis
by (metis ‹(b ++ c) hl = Some x› assms(2) larger_heap_def map_add_SomeD)
next
case (Some bb)
then show ?thesis
by (metis ‹(b ++ c) hl = Some x› assms(1) assms(2) larger_heap_def map_add_SomeD)
qed
qed
lemma compatible_heaps_sum:
assumes "compatible_heaps a b"
and "compatible_heaps a c"
shows "compatible_heaps a (b ++ c)"
by (metis (no_types, opaque_lifting) assms(1) assms(2) compatible_heaps_def map_add_dom_app_simps(1) map_add_dom_app_simps(3))
lemma larger_compatible_sum_heaps:
assumes "larger_heap a x"
and "larger_heap b y"
and "compatible_heaps a b"
shows "compatible_heaps x y"
proof (rule compatible_heapsI)
fix hl a b assume "x hl = Some a" "y hl = Some b"
then show "a = b"
by (metis assms(1) assms(2) assms(3) compatible_heaps_def compatible_options.simps(1) larger_heap_def)
qed
lemma get_h_m:
"Rep_state x = (get_m x, get_h x)" by simp
lemma get_pre:
"get_h x = snd (Rep_state x)"
"get_m x = fst (Rep_state x)"
by simp_all
lemma plus_ab_defined:
"φ ⊕ φ' ≠ None ⟷ compatible_heaps (get_h φ) (get_h φ') ∧ valid_mask (add_masks (get_m φ) (get_m φ'))"
(is "?A ⟷ ?B")
proof
show "?A ⟹ ?B"
by (metis compatible_def get_pre(1) get_pre(2) plus_def)
show "?B ⟹ ?A"
using compatible_def plus_def by auto
qed
lemma plus_charact:
assumes "a ⊕ b = Some x"
shows "get_m x = add_masks (get_m a) (get_m b)"
and "get_h x = (get_h a) ++ (get_h b)"
proof -
have "x = (Abs_state (add_states (Rep_state a) (Rep_state b)))"
by (metis assms option.discI option.inject plus_def)
moreover have "compatible (Rep_state a) (Rep_state b)"
using assms(1) plus_def by (metis option.discI)
moreover have "valid_state (add_states (Rep_state a) (Rep_state b))"
proof -
have "valid_state (add_masks (get_m a) (get_m b), (get_h a) ++ (get_h b))"
proof (rule valid_stateI)
show "valid_mask (add_masks (get_m a) (get_m b))"
using calculation(2) compatible_def by fastforce
fix hl assume "ppos (add_masks (get_m a) (get_m b) hl)"
then show "(get_h a ++ get_h b) hl ≠ None"
proof (cases "ppos (get_m a hl)")
case True
then show ?thesis
by (metis Rep_state get_h_m map_add_None mem_Collect_eq valid_heap_def valid_state.simps)
next
case False
then have "ppos (get_m b hl)"
using ‹ppos (add_masks (get_m a) (get_m b) hl)› padd.rep_eq ppos.rep_eq by auto
then show ?thesis
by (metis Rep_state get_h_m map_add_None mem_Collect_eq valid_heap_def valid_state.simps)
qed
qed
then show ?thesis
using add_states.simps get_h_m by presburger
qed
ultimately show "get_m x = add_masks (get_m a) (get_m b)"
by (metis Abs_state_inverse add_states.simps fst_conv get_h_m mem_Collect_eq)
show "get_h x = (get_h a) ++ (get_h b)"
by (metis Abs_state_inject CollectI Rep_state Rep_state_inverse ‹valid_state (add_states (Rep_state a) (Rep_state b))› ‹x = Abs_state (add_states (Rep_state a) (Rep_state b))› add_states.simps eq_snd_iff get_h.simps)
qed
lemma commutative:
"a ⊕ b = b ⊕ a"
proof (cases "compatible_heaps (get_h a) (get_h b) ∧ valid_mask (add_masks (get_m a) (get_m b))")
case True
then have r0: "compatible_heaps (get_h b) (get_h a) ∧ add_masks (get_m a) (get_m b) = add_masks (get_m b) (get_m a)"
by (metis add_masks_comm compatible_heapsI compatible_heaps_def compatible_options.simps(1))
then have "(get_h a) ++ (get_h b) = (get_h b) ++ (get_h a)"
by (simp add: compatible_heaps_comm)
then show ?thesis
by (metis True r0 add_states.simps get_h_m plus_ab_defined plus_def)
next
case False
then show ?thesis
by (metis add_masks_comm compatible_heapsI compatible_heaps_def compatible_options.simps(1) plus_ab_defined)
qed
lemma asso1:
assumes "a ⊕ b = Some ab ∧ b ⊕ c = Some bc"
shows "ab ⊕ c = a ⊕ bc"
proof (cases "ab ⊕ c")
case None
then show ?thesis
proof (cases "compatible_heaps (get_h ab) (get_h c)")
case True
then have "¬ valid_mask (add_masks (add_masks (get_m a) (get_m b)) (get_m c))"
by (metis None assms plus_ab_defined plus_charact(1))
then show ?thesis
by (metis add_masks_asso assms plus_ab_defined plus_charact(1))
next
case False
then have "¬ compatible_heaps (get_h a ++ get_h b) (get_h c)"
using assms plus_charact(2) by force
then obtain l x y where "(get_h a ++ get_h b) l = Some x" "get_h c l = Some y" "x ≠ y"
using compatible_heapsI by blast
then have "¬ compatible_heaps (get_h a) (get_h b ++ get_h c)"
proof (cases "get_h a l")
case None
then show ?thesis
by (metis ‹(get_h a ++ get_h b) l = Some x› ‹get_h c l = Some y› ‹x ≠ y› assms compatible_heaps_comm map_add_dom_app_simps(1) map_add_dom_app_simps(3) map_add_find_right option.inject option.simps(3) plus_ab_defined)
next
case (Some aa)
then show ?thesis
by (metis ‹(get_h a ++ get_h b) l = Some x› ‹get_h c l = Some y› ‹x ≠ y› assms commutative compatible_heaps_def compatible_options.elims(2) map_add_find_right option.inject option.simps(3) plus_charact(2))
qed
then show ?thesis
by (metis None assms plus_ab_defined plus_charact(2))
qed
next
case (Some x)
then have "compatible_heaps (get_h a ++ get_h b) (get_h c)"
by (metis assms option.simps(3) plus_ab_defined plus_charact(2))
then have "compatible_heaps (get_h a) (get_h b ++ get_h c)"
by (metis (full_types) assms compatible_heaps_comm compatible_heaps_def compatible_heaps_sum compatible_options.simps(2) domIff map_add_dom_app_simps(1) option.distinct(1) plus_ab_defined)
moreover have "valid_mask (add_masks (get_m a) (add_masks (get_m b) (get_m c)))"
by (metis Some add_masks_asso assms option.distinct(1) plus_ab_defined plus_charact(1))
ultimately obtain y where "Some y = a ⊕ bc"
by (metis assms plus_ab_defined plus_charact(1) plus_charact(2) plus_def)
then show ?thesis
by (metis (mono_tags, lifting) Some add_masks_asso add_states.simps assms get_h_m map_add_assoc option.distinct(1) plus_charact(1) plus_charact(2) plus_def)
qed
lemma asso2:
assumes "a ⊕ b = Some ab ∧ b ⊕ c = None"
shows " ab ⊕ c = None"
proof (cases "valid_mask (add_masks (get_m b) (get_m c))")
case True
then have "¬ compatible_heaps (get_h b) (get_h c)"
using assms plus_ab_defined by blast
then obtain l x y where "get_h b l = Some x" "get_h c l = Some y" "x ≠ y"
using compatible_heapsI by blast
then have "get_h ab l = Some x"
by (metis assms map_add_find_right plus_charact(2))
then show ?thesis
by (metis ‹get_h c l = Some y› ‹x ≠ y› compatible_heaps_def compatible_options.simps(1) plus_ab_defined)
next
case False
then obtain l where "¬ (pgte pwrite (add_masks (get_m b) (get_m c) l))"
by (metis Abs_state_cases Rep_state_cases Rep_state_inverse add_masks_equiv_valid_null get_h_m mem_Collect_eq valid_mask.simps valid_null_def valid_state.simps)
then have "¬ (pgte pwrite (add_masks (get_m ab) (get_m c) l))"
proof -
have "pgte (add_masks (get_m ab) (get_m c) l) (add_masks (get_m b) (get_m c) l)"
using assms p_greater_exists padd_asso padd_comm plus_charact(1) by auto
then show ?thesis
by (meson ‹¬ pgte pwrite (add_masks (get_m b) (get_m c) l)› order_trans pgte.rep_eq)
qed
then show ?thesis
using plus_ab_defined valid_mask.simps by blast
qed
lemma core_defined:
"get_h |φ| = get_h φ"
"get_m |φ| = empty_mask"
using Abs_state_inverse core_def pnone.rep_eq ppos.rep_eq valid_empty valid_stateI apply force
by (metis Abs_state_inverse CollectI core_def empty_mask.simps fst_conv get_pre(2) less_irrefl pnone.rep_eq ppos.rep_eq valid_empty valid_stateI)
lemma state_ext:
assumes "get_h a = get_h b"
and "get_m a = get_m b"
shows "a = b"
by (metis Rep_state_inverse assms(1) assms(2) get_h_m)
lemma core_is_smaller:
"Some x = x ⊕ |x|"
proof -
obtain y where "Some y = x ⊕ |x|"
by (metis Rep_state compatible_heapsI core_defined(1) core_defined(2) get_h_m mem_Collect_eq minus_empty option.collapse option.sel plus_ab_defined valid_state.simps)
moreover have "y = x"
proof (rule state_ext)
have "get_h x = get_h x ++ get_h x"
by (simp add: map_add_subsumed1)
then show "get_h y = get_h x"
using calculation core_defined(1) plus_charact(2) by presburger
show "get_m y = get_m x"
by (metis calculation core_defined(2) minus_empty plus_charact(1))
qed
ultimately show ?thesis by blast
qed
lemma core_is_pure:
"Some |x| = |x| ⊕ |x|"
proof -
obtain y where "Some y = |x| ⊕ |x|"
by (metis core_def core_defined(1) core_is_smaller)
moreover have "y = |x|"
by (metis calculation core_def core_defined(1) core_is_smaller option.sel)
ultimately show ?thesis by blast
qed
lemma core_sum:
assumes "Some c = a ⊕ b"
shows "Some |c| = |a| ⊕ |b|"
proof -
obtain x where "Some x = |a| ⊕ |b|"
by (metis assms core_defined(1) core_defined(2) minus_empty option.exhaust_sel plus_ab_defined valid_empty)
moreover have "x = |c|"
by (metis assms calculation core_defined(1) core_defined(2) minus_empty plus_charact(1) plus_charact(2) state_ext)
ultimately show ?thesis by blast
qed
lemma core_max:
assumes "Some x = x ⊕ c"
shows "∃r. Some |x| = c ⊕ r"
proof -
obtain y where "Some y = c ⊕ |x|"
by (metis assms asso2 core_is_smaller plus_def)
moreover have "|x| = y"
by (metis (mono_tags, opaque_lifting) Rep_state_inverse add_masks_cancellative assms calculation commutative core_defined(1) core_sum get_h_m minus_empty option.inject plus_charact(1))
ultimately show ?thesis by blast
qed
lemma positivity:
assumes "a ⊕ b = Some c"
and "Some c = c ⊕ c"
shows "Some a = a ⊕ a"
proof -
obtain x where "Some x = a ⊕ a"
by (metis assms(1) assms(2) asso2 commutative option.exhaust_sel)
moreover have "x = a"
by (metis Rep_state_inverse add_masks_cancellative add_masks_comm assms(1) assms(2) calculation core_defined(1) core_defined(2) core_is_smaller get_h_m greater_mask_def greater_mask_properties(3) option.sel plus_charact(1))
ultimately show ?thesis by blast
qed
lemma cancellative:
assumes "Some a = b ⊕ x"
and "Some a = b ⊕ y"
and "|x| = |y|"
shows "x = y"
by (metis add_masks_cancellative assms(1) assms(2) assms(3) core_defined(1) plus_charact(1) state_ext)
lemma unit_charact:
"get_h unit = empty_heap"
"get_m unit = empty_mask"
proof -
have "valid_state (empty_mask, empty_heap)"
using valid_pre_unit by auto
then show "get_h unit = empty_heap" using unit_def
by (simp add: ‹unit = Abs_state (empty_mask, empty_heap)› Abs_state_inverse)
show "get_m unit = empty_mask"
using ‹valid_state (empty_mask, empty_heap)› unit_def Abs_state_inverse
by fastforce
qed
lemma empty_heap_neutral:
"a ++ empty_heap = a"
proof (rule ext)
fix x show "(a ++ empty_heap) x = a x"
by (simp add: domIff empty_heap_def map_add_dom_app_simps(3))
qed
lemma unit_neutral:
"Some a = a ⊕ unit"
proof -
obtain x where "Some x = a ⊕ unit"
by (metis Abs_state_cases Rep_state_cases Rep_state_inverse compatible_heapsI empty_heap_def fst_conv get_h_m mem_Collect_eq minus_empty option.distinct(1) option.exhaust_sel plus_ab_defined snd_conv unit_def valid_pre_unit valid_state.simps)
moreover have "x = a"
proof (rule state_ext)
show "get_h x = get_h a"
using calculation empty_heap_neutral plus_charact(2) unit_charact(1) by auto
show "get_m x = get_m a"
by (metis calculation minus_empty plus_charact(1) unit_charact(2))
qed
ultimately show ?thesis by blast
qed
lemma stableI:
assumes "⋀hl. ppos (get_m φ hl) ⟷ get_h φ hl ≠ None"
shows "stable φ"
using assms stable_def by blast
lemma stable_unit:
"stable unit"
by (metis empty_heap_def stable_def unit_charact(1) unit_charact(2) valid_heap_def valid_pre_unit valid_state.simps)
lemma stable_sum:
assumes "stable a"
and "stable b"
and "Some x = a ⊕ b"
shows "stable x"
proof (rule stableI)
fix hl
show "ppos (get_m x hl) = (get_h x hl ≠ None)" (is "?A ⟷ ?B")
proof
show "?A ⟹ ?B"
by (metis add_le_same_cancel2 add_masks.simps assms(1) assms(2) assms(3) leI less_le_trans map_add_None padd.rep_eq plus_charact(1) plus_charact(2) ppos.rep_eq stable_def)
show "?B ⟹ ?A"
by (metis add_masks.simps assms(1) assms(2) assms(3) map_add_None padd_comm plus_charact(1) plus_charact(2) ppos_add stable_def)
qed
qed
lemma multiply_valid:
assumes "pgte pwrite p"
shows "valid_state (multiply_mask p (get_m φ), get_h φ)"
proof (rule valid_stateI)
show "valid_mask (multiply_mask p (get_m φ))"
by (metis Rep_state assms(1) get_h_m mem_Collect_eq valid_mult valid_state.simps)
fix hl show "ppos (multiply_mask p (get_m φ) hl) ⟹ get_h φ hl ≠ None"
by (metis Abs_state_cases Rep_state_cases Rep_state_inverse get_h_m mem_Collect_eq multiply_mask_def pmult_comm pmult_special(2) ppos_eq_pnone valid_heap_def valid_state.simps)
qed
subsection ‹This state model corresponds to a separation algebra›