Theory Succ_Graph
section ‹Graphs defined by Successor Functions›
theory Succ_Graph
imports
Collections.Refine_Dflt
begin
text ‹
This code is used in various examples
›
type_synonym 'a slg = "'a ⇒ 'a list"
definition slg_rel_def_internal: "slg_rel R ≡
{(succs,G). ∀v. (succs v, G``{v}) ∈ ⟨R⟩list_set_rel}"
lemma slg_rel_def: "⟨R⟩slg_rel ≡
{(succs,G). ∀v. (succs v, G``{v}) ∈ ⟨R⟩list_set_rel}"
by (auto simp: slg_rel_def_internal relAPP_def)
lemma [relator_props]: "single_valued R ⟹ single_valued (⟨R⟩slg_rel)"
unfolding slg_rel_def
apply (rule single_valuedI)
apply (auto dest: single_valuedD[OF list_set_rel_sv])
done
consts i_slg :: "interface ⇒ interface"
lemmas [autoref_rel_intf] =
REL_INTFI[of slg_rel i_slg]
definition [simp]: "slg_succs E v ≡ E``{v}"
lemma [autoref_itype]: "slg_succs ::⇩i ⟨I⟩⇩ii_slg →⇩i I →⇩i ⟨I⟩⇩ii_set" by simp
context begin interpretation autoref_syn .
lemma [autoref_op_pat]: "E``{v} ≡ slg_succs$E$v" by simp
end
definition [code_unfold, simp]: "slg_succs_impl succs v ≡ succs v"
lemma refine_slg_succs[autoref_rules_raw]:
"(slg_succs_impl,slg_succs)∈⟨Id⟩slg_rel→Id→⟨Id⟩list_set_rel"
apply (intro fun_relI)
apply (simp add: slg_succs_def slg_rel_def)
done
subsection "Graph Representations"
definition succ_of_list :: "(nat×nat) list ⇒ nat ⇒ nat set"
where
"succ_of_list l ≡ let
m = fold (λ(u,v) g.
case g u of
None ⇒ g(u↦{v})
| Some s ⇒ g(u↦insert v s)
) l Map.empty
in
(λu. case m u of None ⇒ {} | Some s ⇒ s)
"
schematic_goal succ_of_list_impl:
notes [autoref_tyrel] =
ty_REL[where 'a="nat⇀nat set" and R="⟨nat_rel,R⟩iam_map_rel" for R]
ty_REL[where 'a="nat set" and R="⟨nat_rel⟩list_set_rel"]
shows "(?f::?'c,succ_of_list) ∈ ?R"
unfolding succ_of_list_def[abs_def]
apply (autoref (keep_goal))
done
concrete_definition succ_of_list_impl uses succ_of_list_impl
export_code succ_of_list_impl checking SML
definition acc_of_list :: "nat list ⇒ nat set"
where "acc_of_list l ≡ fold insert l {}"
schematic_goal acc_of_list_impl:
notes [autoref_tyrel] =
ty_REL[where 'a="nat set" and R="⟨nat_rel⟩iam_set_rel" for R]
shows "(?f::?'c,acc_of_list) ∈ ?R"
unfolding acc_of_list_def[abs_def]
apply (autoref (keep_goal))
done
concrete_definition acc_of_list_impl uses acc_of_list_impl
export_code acc_of_list_impl checking SML
end