Theory Word_Lib.Generic_set_bit

(*
 * Copyright Data61, CSIRO (ABN 41 687 119 230)
 *
 * SPDX-License-Identifier: BSD-2-Clause
 *)

(* Author: Jeremy Dawson, NICTA *)

section ‹Operation variant for setting and unsetting bits›

theory Generic_set_bit
  imports
    "HOL-Library.Word"
    Most_significant_bit
begin

class set_bit = semiring_bits +
  fixes set_bit :: 'a  nat  bool  'a
  assumes bit_set_bit_iff_2n:
  bit (set_bit a m b) n 
    (if m = n then b else bit a n)  2 ^ n  0
begin

lemma bit_set_bit_iff [bit_simps]:
    bit (set_bit a m b) n 
      (if m = n then b else bit a n)  possible_bit TYPE('a) n
  by (simp add: bit_set_bit_iff_2n fold_possible_bit) 

end

lemma set_bit_eq:
  set_bit a n b = (if b then Bit_Operations.set_bit else unset_bit) n a
  for a :: 'a::{semiring_bit_operations, set_bit}
  by (rule bit_eqI) (simp add: bit_simps)

instantiation nat :: set_bit
begin

definition set_bit_nat :: nat  nat  bool  nat
  where set_bit m n b = (if b then Bit_Operations.set_bit else unset_bit) n m for m n :: nat

instance
  by standard (simp add: set_bit_nat_def bit_simps)

end


instantiation int :: set_bit
begin

definition set_bit_int :: int  nat  bool  int
  where set_bit_int i n b = (if b then Bit_Operations.set_bit else Bit_Operations.unset_bit) n i

instance
  by standard (simp add: set_bit_int_def bit_simps)

end

instantiation word :: (len) set_bit
begin

definition set_bit_word :: 'a word  nat  bool  'a word
  where set_bit_unfold: set_bit w n b = (if b then Bit_Operations.set_bit n w else unset_bit n w)
  for w :: 'a::len word

instance
  by standard (auto simp add: set_bit_unfold bit_simps dest: bit_imp_le_length)

end

lemma bit_set_bit_word_iff [bit_simps]:
  bit (set_bit w m b) n  (if m = n then n < LENGTH('a)  b else bit w n)
  for w :: 'a::len word
  by (auto simp add: bit_simps dest: bit_imp_le_length)

context
  includes bit_operations_syntax
begin

lemma int_set_bit_0 [simp]: fixes x :: int shows
  "set_bit x 0 b = of_bool b + 2 * (x div 2)"
  by (simp add: set_bit_eq)

lemma int_set_bit_Suc: fixes x :: int shows
  "set_bit x (Suc n) b = of_bool (odd x) + 2 * set_bit (x div 2) n b"
  by (simp add: set_bit_eq set_bit_Suc unset_bit_Suc mod2_eq_if)

lemma bin_last_set_bit:
  "odd (set_bit x n b :: int) = (if n > 0 then odd x else b)"
  by (cases n) (simp_all add: int_set_bit_Suc)

lemma bin_rest_set_bit:
  "(set_bit x n b :: int) div 2 = (if n > 0 then set_bit (x div 2) (n - 1) b else x div 2)"
  by (cases n) (simp_all add: int_set_bit_Suc)

lemma int_set_bit_numeral: fixes x :: int shows
  "set_bit x (numeral w) b = of_bool (odd x) + 2 * set_bit (x div 2) (pred_numeral w) b"
  by (simp add: numeral_eq_Suc int_set_bit_Suc)

lemmas int_set_bit_numerals [simp] =
  int_set_bit_numeral[where x="numeral w'"]
  int_set_bit_numeral[where x="- numeral w'"]
  int_set_bit_numeral[where x="Numeral1"]
  int_set_bit_numeral[where x="1"]
  int_set_bit_numeral[where x="0"]
  int_set_bit_Suc[where x="numeral w'"]
  int_set_bit_Suc[where x="- numeral w'"]
  int_set_bit_Suc[where x="Numeral1"]
  int_set_bit_Suc[where x="1"]
  int_set_bit_Suc[where x="0"]
  for w'

lemma fixes i :: int
  shows int_set_bit_True_conv_OR [code]: "Generic_set_bit.set_bit i n True = i OR push_bit n 1"
  and int_set_bit_False_conv_NAND [code]: "Generic_set_bit.set_bit i n False = i AND NOT (push_bit n 1)"
  and int_set_bit_conv_ops: "Generic_set_bit.set_bit i n b = (if b then i OR (push_bit n 1) else i AND NOT (push_bit n 1))"
  by (simp_all add: bit_eq_iff) (auto simp add: bit_simps)

lemma msb_set_bit [simp]:
  "msb (set_bit (x :: int) n b)  msb x"
  by (simp add: msb_int_def set_bit_int_def)

lemmas msb_bin_sc = msb_set_bit

abbreviation (input) bin_sc :: nat  bool  int  int
  where bin_sc n b i  set_bit i n b

lemma bin_sc_eq:
  bin_sc n False = unset_bit n
  bin_sc n True = Bit_Operations.set_bit n
  by (simp_all add: set_bit_eq)

lemma bin_sc_0 [simp]:
  "bin_sc 0 b w = of_bool b + 2 * (λk::int. k div 2) w"
  by (simp add: set_bit_eq)

lemma bin_sc_Suc [simp]:
  "bin_sc (Suc n) b w = of_bool (odd w) + 2 * bin_sc n b (w div 2)"
  by (simp add: set_bit_eq set_bit_Suc unset_bit_Suc mod2_eq_if)

lemma bin_nth_sc [bit_simps]: "bit (bin_sc n b w) n  b"
  by (simp add: bit_simps)

lemma bin_sc_sc_same [simp]: "bin_sc n c (bin_sc n b w) = bin_sc n c w"
  by (rule bit_eqI) (simp add: bit_simps)

lemma bin_sc_sc_diff: "m  n  bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
  by (rule bit_eqI) (simp add: bit_simps)

lemma bin_nth_sc_gen: "(bit :: int  nat  bool) (bin_sc n b w) m = (if m = n then b else (bit :: int  nat  bool) w m)"
  by (simp add: bit_simps)

lemma bin_sc_nth [simp]: "bin_sc n ((bit :: int  nat  bool) w n) w = w"
  by (rule bit_eqI) (simp add: bin_nth_sc_gen)

lemma bin_sc_bintr [simp]:
  "(take_bit :: nat  int  int) m (bin_sc n x ((take_bit :: nat  int  int) m w)) = (take_bit :: nat  int  int) m (bin_sc n x w)"
  apply (rule bit_eqI)
  apply (cases x)
   apply (auto simp add: bit_simps bin_sc_eq)
  done

lemma bin_clr_le: "bin_sc n False w  w"
  by (simp add: set_bit_int_def unset_bit_less_eq)

lemma bin_set_ge: "bin_sc n True w  w"
  by (simp add: set_bit_int_def set_bit_greater_eq)

lemma bintr_bin_clr_le: "(take_bit :: nat  int  int) n (bin_sc m False w)  (take_bit :: nat  int  int) n w"
  by (simp add: set_bit_int_def take_bit_unset_bit_eq unset_bit_less_eq)

lemma bintr_bin_set_ge: "(take_bit :: nat  int  int) n (bin_sc m True w)  (take_bit :: nat  int  int) n w"
  by (simp add: set_bit_int_def take_bit_set_bit_eq set_bit_greater_eq)

lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0"
  by (induct n) auto

lemma bin_sc_TM [simp]: "bin_sc n True (- 1) = - 1"
  by (induct n) auto

lemmas bin_sc_simps = bin_sc_0 bin_sc_Suc bin_sc_TM bin_sc_FP

lemma bin_sc_minus: "0 < n  bin_sc (Suc (n - 1)) b w = bin_sc n b w"
  by auto

lemmas bin_sc_Suc_minus =
  trans [OF bin_sc_minus [symmetric] bin_sc_Suc]

lemma bin_sc_numeral [simp]:
  "bin_sc (numeral k) b w =
    of_bool (odd w) + 2 * bin_sc (pred_numeral k) b (w div 2)"
  by (simp add: numeral_eq_Suc)

lemmas bin_sc_minus_simps =
  bin_sc_simps (2,3,4) [THEN [2] trans, OF bin_sc_minus [THEN sym]]

lemma bin_sc_pos:
  "0  i  0  bin_sc n b i"
  by (simp add: set_bit_eq)

lemma bin_clr_conv_NAND:
  "bin_sc n False i = i AND NOT (push_bit n 1)"
  by (rule bit_eqI) (auto simp add: bin_sc_eq bit_simps)

lemma bin_set_conv_OR:
  "bin_sc n True i = i OR (push_bit n 1)"
  by (rule bit_eqI) (auto simp add: bin_sc_eq bit_simps)

lemma word_set_bit_def:
  set_bit a n x = word_of_int (bin_sc n x (uint a))
  apply (rule bit_word_eqI)
  apply (cases x)
   apply (simp_all add: bit_simps bin_sc_eq)
  done

lemma set_bit_word_of_int:
  "set_bit (word_of_int x) n b = word_of_int (bin_sc n b x)"
  by (rule word_eqI) (auto simp add: bit_simps)

lemma word_set_numeral [simp]:
  "set_bit (numeral bin::'a::len word) n b =
    word_of_int (bin_sc n b (numeral bin))"
  unfolding word_numeral_alt by (rule set_bit_word_of_int)

lemma word_set_neg_numeral [simp]:
  "set_bit (- numeral bin::'a::len word) n b =
    word_of_int (bin_sc n b (- numeral bin))"
  unfolding word_neg_numeral_alt by (rule set_bit_word_of_int)

lemma word_set_bit_0 [simp]: "set_bit 0 n b = word_of_int (bin_sc n b 0)"
  unfolding word_0_wi by (rule set_bit_word_of_int)

lemma word_set_bit_1 [simp]: "set_bit 1 n b = word_of_int (bin_sc n b 1)"
  unfolding word_1_wi by (rule set_bit_word_of_int)

lemma setBit_no: "Bit_Operations.set_bit n (numeral bin) = word_of_int (bin_sc n True (numeral bin))"
  by (rule bit_word_eqI) (simp add: bit_simps)

lemma clearBit_no:
  "unset_bit n (numeral bin) = word_of_int (bin_sc n False (numeral bin))"
  by (rule bit_word_eqI) (simp add: bit_simps)

end

lemma test_bit_set_gen:
  "bit (set_bit w n x) m  (if m = n then n < size w  x else bit w m)"
  for w :: "'a::len word"
  by (simp add: bit_set_bit_word_iff word_size)

lemma test_bit_set:
  "bit (set_bit w n x) n  n < size w  x"
  for w :: "'a::len word"
  by (auto simp add: bit_simps word_size)

lemma word_set_nth: "set_bit w n (bit w n) = w"
  for w :: "'a::len word"
  by (rule bit_word_eqI) (simp add: bit_simps)

lemma word_set_set_same [simp]: "set_bit (set_bit w n x) n y = set_bit w n y"
  for w :: "'a::len word"
  by (rule word_eqI) (simp add : test_bit_set_gen word_size)

lemma word_set_set_diff:
  fixes w :: "'a::len word"
  assumes "m  n"
  shows "set_bit (set_bit w m x) n y = set_bit (set_bit w n y) m x"
  by (rule word_eqI) (auto simp: test_bit_set_gen word_size assms)

lemma word_set_nth_iff: "set_bit w n b = w  bit w n = b  n  size w"
  for w :: "'a::len word"
  apply (rule iffI)
   apply (rule disjCI)
   apply (drule word_eqD)
   apply (erule sym [THEN trans])
   apply (simp add: test_bit_set)
  apply (erule disjE)
   apply clarsimp
  apply (rule word_eqI)
   apply (clarsimp simp add : test_bit_set_gen)
   apply (auto simp add: word_size)
  apply (rule bit_eqI)
  apply (simp add: bit_simps)
  done

lemma word_clr_le: "w  set_bit w n False"
  for w :: "'a::len word"
  apply (simp add: set_bit_unfold)
  apply transfer
  apply (simp add: take_bit_unset_bit_eq unset_bit_less_eq)
  done

lemma word_set_ge: "w  set_bit w n True"
  for w :: "'a::len word"
  apply (simp add: set_bit_unfold)
  apply transfer
  apply (simp add: take_bit_set_bit_eq set_bit_greater_eq)
  done

lemma set_bit_beyond:
  "size x  n  set_bit x n b = x" for x :: "'a :: len word"
  by (simp add: word_set_nth_iff)

lemma one_bit_shiftl: "set_bit 0 n True = (1 :: 'a :: len word) << n"
  apply (rule word_eqI)
  apply (auto simp add: word_size bit_simps)
  done

lemma one_bit_pow: "set_bit 0 n True = (2 :: 'a :: len word) ^ n"
  by (rule word_eqI) (simp add: bit_simps)

instantiation integer :: set_bit
begin

context
  includes integer.lifting
begin

lift_definition set_bit_integer :: integer  nat  bool  integer
  is set_bit .

instance
  by (standard; transfer) (simp add: bit_simps)

end

end

end