Theory Partial_Equivalence_Relation
theory Partial_Equivalence_Relation
imports Main
begin
subsection ‹Partial Equivalence Relations›
text ‹
The abstract datatype for a union-find structure is a partial equivalence
relation.
›
definition "part_equiv R ≡ sym R ∧ trans R"
lemma part_equivI[intro?]: "⟦sym R; trans R⟧ ⟹ part_equiv R"
by (simp add: part_equiv_def)
lemma part_equiv_refl:
"part_equiv R ⟹ (x,y)∈R ⟹ (x,x)∈R"
"part_equiv R ⟹ (x,y)∈R ⟹ (y,y)∈R"
by (metis part_equiv_def symD transD)+
lemma part_equiv_sym: "part_equiv R ⟹ (x,y)∈R ⟹ (y,x)∈R"
by (metis part_equiv_def symD)
lemma part_equiv_trans: "part_equiv R ⟹ (x,y)∈R ⟹ (y,z)∈R ⟹ (x,z)∈R"
by (metis part_equiv_def transD)
lemma part_equiv_trans_sym:
"⟦ part_equiv R; (a,b)∈R; (c,b)∈R ⟧ ⟹ (a,c)∈R"
"⟦ part_equiv R; (a,b)∈R; (a,c)∈R ⟧ ⟹ (b,c)∈R"
apply (metis part_equiv_sym part_equiv_trans)+
done
text ‹We define a shortcut for symmetric closure.›
definition "symcl R ≡ R ∪ R¯"
lemma sym_symcl[simp, intro!]: "sym (symcl R)"
by (metis sym_Un_converse symcl_def)
lemma sym_trans_is_part_equiv[simp, intro!]: "part_equiv ((symcl R)⇧*)"
by (metis part_equiv_def sym_rtrancl sym_symcl trans_rtrancl)
text ‹We also define a shortcut for melding the equivalence classes of
two given elements›
definition per_union where "per_union R a b ≡ R ∪
{ (x,y). (x,a)∈R ∧ (y,b)∈R } ∪ { (y,x). (x,a)∈R ∧ (y,b)∈R }"
lemma union_part_equivp:
"part_equiv R ⟹ part_equiv (per_union R a b)"
apply rule
unfolding per_union_def
apply (rule symI)
apply (auto dest: part_equiv_sym) []
apply (rule transI)
apply (auto dest: part_equiv_trans part_equiv_trans_sym)
done
lemma per_union_cmp:
"⟦ part_equiv R; (l,j)∈R ⟧ ⟹ per_union R l j = R"
unfolding per_union_def by (auto dest: part_equiv_trans_sym)
lemma per_union_same[simp]: "part_equiv R ⟹ per_union R l l = R"
unfolding per_union_def by (auto dest: part_equiv_trans_sym)
lemma per_union_commute[simp]: "per_union R i j = per_union R j i"
unfolding per_union_def by auto
lemma per_union_dom[simp]: "Domain (per_union R i j) = Domain R"
unfolding per_union_def by auto
lemma per_classes_dj:
"⟦part_equiv R; (i,j)∉R⟧ ⟹ R``{i} ∩ R``{j} = {}"
by (auto dest: part_equiv_trans_sym)
lemma per_class_in_dom: "⟦part_equiv R⟧ ⟹ R``{i} ⊆ Domain R"
by (auto dest: part_equiv_trans_sym)
end