Theory Automation_Setup
theory Automation_Setup
imports System_Specification
begin
lemma add_prop:
assumes "PROP (T)"
shows "A ==> PROP (T)"
using assms .
lemmas exhaust_elim =
sActt.exhaust[of x, THEN add_prop[where A="a=Sact x"], rotated -1]
cActt.exhaust[of x, THEN add_prop[where A="a=Cact x"], rotated -1]
uActt.exhaust[of x, THEN add_prop[where A="a=Uact x"], rotated -1]
rActt.exhaust[of x, THEN add_prop[where A="a=Ract x"], rotated -1]
lActt.exhaust[of x, THEN add_prop[where A="a=Lact x"], rotated -1]
for x a
lemma state_cong:
fixes s::state
assumes
"pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧ userIDs s = userIDs s1 ∧
postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
user s = user s1 ∧ pass s = pass s1 ∧ pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s = friendIDs s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1"
shows "s = s1"
using assms by (cases s, cases s1) auto
end