Theory HOL-Hoare.Arith2
section ‹More arithmetic›
theory Arith2
imports Main
begin
definition cd :: "[nat, nat, nat] ⇒ bool"
where "cd x m n ⟷ x dvd m ∧ x dvd n"
definition gcd :: "[nat, nat] ⇒ nat"
where "gcd m n = (SOME x. cd x m n & (∀y.(cd y m n) ⟶ y≤x))"
primrec fac :: "nat ⇒ nat"
where
"fac 0 = Suc 0"
| "fac (Suc n) = Suc n * fac n"
subsection ‹cd›
lemma cd_nnn: "0<n ⟹ cd n n n"
apply (simp add: cd_def)
done
lemma cd_le: "[| cd x m n; 0<m; 0<n |] ==> x<=m & x<=n"
apply (unfold cd_def)
apply (blast intro: dvd_imp_le)
done
lemma cd_swap: "cd x m n = cd x n m"
apply (unfold cd_def)
apply blast
done
lemma cd_diff_l: "n≤m ⟹ cd x m n = cd x (m-n) n"
apply (unfold cd_def)
apply (fastforce dest: dvd_diffD)
done
lemma cd_diff_r: "m≤n ⟹ cd x m n = cd x m (n-m)"
apply (unfold cd_def)
apply (fastforce dest: dvd_diffD)
done
subsection ‹gcd›
lemma gcd_nnn: "0<n ⟹ n = gcd n n"
apply (unfold gcd_def)
apply (frule cd_nnn)
apply (rule some_equality [symmetric])
apply (blast dest: cd_le)
apply (blast intro: le_antisym dest: cd_le)
done
lemma gcd_swap: "gcd m n = gcd n m"
apply (simp add: gcd_def cd_swap)
done
lemma gcd_diff_l: "n≤m ⟹ gcd m n = gcd (m-n) n"
apply (unfold gcd_def)
apply (subgoal_tac "n≤m ⟹ ∀x. cd x m n = cd x (m-n) n")
apply simp
apply (rule allI)
apply (erule cd_diff_l)
done
lemma gcd_diff_r: "m≤n ⟹ gcd m n = gcd m (n-m)"
apply (unfold gcd_def)
apply (subgoal_tac "m≤n ⟹ ∀x. cd x m n = cd x m (n-m) ")
apply simp
apply (rule allI)
apply (erule cd_diff_r)
done
subsection ‹pow›
lemma sq_pow_div2 [simp]:
"m mod 2 = 0 ⟹ ((n::nat)*n)^(m div 2) = n^m"
apply (simp add: power2_eq_square [symmetric] power_mult [symmetric] minus_mod_eq_mult_div [symmetric])
done
end