Theory Eval_Class
section ‹A type class for correspondence between HOL expressions and terms›
theory Eval_Class
imports
"../Rewriting/Rewriting_Term"
"../Utils/ML_Utils"
Deriving.Derive_Manager
"Dict_Construction.Dict_Construction"
begin
no_notation Mpat_Antiquot.mpaq_App (infixl ‹$$› 900)
hide_const (open) Strong_Term.wellformed
declare Strong_Term.wellformed_term_def[simp del]
class evaluate =
fixes eval :: "rule fset ⇒ term ⇒ 'a ⇒ bool" (‹_/ ⊢/ (_ ≈/ _)› [50,0,50] 50)
assumes eval_wellformed: "rs ⊢ t ≈ a ⟹ wellformed t"
begin
definition eval' :: "rule fset ⇒ term ⇒ 'a ⇒ bool" (‹_/ ⊢/ (_ ↓/ _)› [50,0,50] 50) where
"rs ⊢ t ↓ a ⟷ wellformed t ∧ (∃t'. rs ⊢ t ⟶* t' ∧ rs ⊢ t' ≈ a)"
lemma eval'I[intro]:
assumes "wellformed t" "rs ⊢ t ⟶* t'" "rs ⊢ t' ≈ a"
shows "rs ⊢ t ↓ a"
using assms unfolding eval'_def by auto
lemma eval'E[elim]:
assumes "rs ⊢ t ↓ a"
obtains t' where "wellformed t" "rs ⊢ t ⟶* t'" "rs ⊢ t' ≈ a"
using assms unfolding eval'_def by auto
lemma eval_trivI: "rs ⊢ t ≈ a ⟹ rs ⊢ t ↓ a"
by (auto dest: eval_wellformed)
lemma eval_compose:
assumes "wellformed t" "rs ⊢ t ⟶* t'" "rs ⊢ t' ↓ a"
shows "rs ⊢ t ↓ a"
proof -
from ‹rs ⊢ t' ↓ a› obtain t'' where "rs ⊢ t' ⟶* t''" "rs ⊢ t'' ≈ a"
by blast
moreover hence "rs ⊢ t ⟶* t''"
using assms by auto
ultimately show "rs ⊢ t ↓ a"
using assms by auto
qed
end
instantiation "fun" :: (evaluate, evaluate) evaluate begin
definition eval_fun where
"eval_fun rs t a ⟷ wellformed t ∧ (∀x t⇩x. rs ⊢ t⇩x ↓ x ⟶ rs ⊢ t $ t⇩x ↓ a x)"
instance
by standard (simp add: eval_fun_def)
end
corollary eval_funD:
assumes "rs ⊢ t ≈ f" "rs ⊢ t⇩x ↓ x"
shows "rs ⊢ t $ t⇩x ↓ f x"
using assms unfolding eval_fun_def by blast
corollary eval'_funD:
assumes "rs ⊢ t ↓ f" "rs ⊢ t⇩x ↓ x"
shows "rs ⊢ t $ t⇩x ↓ f x"
proof -
from assms obtain t' where "rs ⊢ t ⟶* t'" "rs ⊢ t' ≈ f"
by auto
have "wellformed (t $ t⇩x)"
using assms by auto
moreover have "rs ⊢ t $ t⇩x ⟶* t' $ t⇩x"
using ‹rs ⊢ t ⟶* t'› by (rule rewrite.rt_fun[unfolded app_term_def])
moreover have "rs ⊢ t' $ t⇩x ↓ f x"
using ‹rs ⊢ t' ≈ f› assms(2) by (rule eval_funD)
ultimately show "rs ⊢ t $ t⇩x ↓ f x"
by (rule eval_compose)
qed
lemma eval_ext:
assumes "wellformed f" "⋀x t. rs ⊢ t ↓ x ⟹ rs ⊢ f $ t ↓ a x"
shows "rs ⊢ f ≈ a"
using assms unfolding eval_fun_def by blast
lemma eval'_ext:
assumes "wellformed f" "⋀x t. rs ⊢ t ↓ x ⟹ rs ⊢ f $ t ↓ a x"
shows "rs ⊢ f ↓ a"
apply (rule eval'I[OF ‹wellformed f›])
apply (rule rtranclp.rtrancl_refl)
apply (rule eval_ext)
using assms by auto
lemma eval'_ext_alt:
fixes f :: "'a::evaluate ⇒ 'b::evaluate"
assumes "wellformed' 1 t" "⋀u x. rs ⊢ u ↓ x ⟹ rs ⊢ t [u]⇩β ↓ f x"
shows "rs ⊢ Λ t ↓ f"
proof (rule eval'_ext)
show "wellformed (Λ t)"
using assms by simp
next
fix x :: 'a and u
assume "rs ⊢ u ↓ x"
show "rs ⊢ Λ t $ u ↓ f x"
proof (rule eval_compose)
show "wellformed (Λ t $ u)"
using assms ‹rs ⊢ u ↓ x› by auto
next
show "rs ⊢ Λ t $ u ⟶* t [u]⇩β"
using ‹rs ⊢ u ↓ x› by (auto intro: rewrite.beta)
next
show "rs ⊢ t [u]⇩β ↓ f x"
using assms ‹rs ⊢ u ↓ x› by auto
qed
qed
lemma eval_impl_wellformed[dest]: "rs ⊢ t ≈ a ⟹ wellformed' n t"
by (auto dest: wellformed_inc eval_wellformed[unfolded wellformed_term_def])
lemma eval'_impl_wellformed[dest]: "rs ⊢ t ↓ a ⟹ wellformed' n t"
unfolding eval'_def by (auto dest: wellformed_inc)
lemma wellformed_unpack:
"wellformed' n (t $ u) ⟹ wellformed' n t"
"wellformed' n (t $ u) ⟹ wellformed' n u"
"wellformed' n (Λ t) ⟹ wellformed' (Suc n) t"
by auto
lemma replace_bound_aux:
"n < 0 ⟷ False"
"Suc n < Suc m ⟷ n < m"
"0 < Suc n ⟷ True"
"((0::nat) = 0) ⟷ True"
"(0 = Suc m) ⟷ False"
"(Suc m = Suc n) ⟷ n = m"
"(Suc m = 0) ⟷ False"
"(if True then P else Q) = P"
"(if False then P else Q) = Q"
"int (0::nat) = 0"
by auto
named_theorems eval_data_intros
named_theorems eval_data_elims
context begin
private definition rewrite_step_term :: "term × term ⇒ term ⇒ term option" where
"rewrite_step_term = rewrite_step"
private lemmas rewrite_rt_fun = rewrite.rt_fun[unfolded app_term_def]
private lemmas rewrite_rt_arg = rewrite.rt_arg[unfolded app_term_def]
ML_file "tactics.ML"
end
method_setup wellformed = ‹Scan.succeed (SIMPLE_METHOD' o Tactics.wellformed_tac)›
end